文献精读|鼻内神经生长因子预防和恢复创伤性脑损伤的结果
文摘
健康
2024-09-26 16:00
湖北
题目译名:鼻内神经生长因子预防和恢复创伤性脑损伤的结果发表期刊:Neural Regeneration Research.(神经再生研究)1.创伤性脑损伤的结果目前无法通过药物治愈,只能缓解治疗。2.神经生长因子是一种靶向神经元和非神经元细胞的神经营养因子,可能有助于预防/限制创伤性脑损伤的继发性损伤的结果。
3.神经生长因子经鼻给药可以绕过血脑屏障并确保药物通过脑实质快速广泛扩散,到达大脑中的神经营养因子靶点。
4.神经生长因子可以有效作用于创伤后脑损伤进展相关的分子功能障碍。
创伤性脑损伤 (TBI) 是由外部机械力(例如冲击、严重加速/减速和钝力)对大脑造成的突然损伤。迄今为止,还没有针对治疗TBI多种结局的药物治疗方案。根据世界卫生组织的定义,只有缓解治疗的方法通过早期识别、评估和治疗疼痛以及身体、社会心理和精神问题来预防和减轻痛苦,从而改善面临与危及生命疾病有关的问题患者的生活质量。神经生长因子 (NGF) 是一种神经营养肽,主要因其调节外周感觉、交感神经和中枢胆碱能神经元的生长和存活的能力而被发现。五十年的研究表明,NGF还针对中枢神经系统(CNS)中的非神经元细胞群,调节其行为。NGF的这种特性为广泛的临床前和临床研究奠定了基础,旨在研究其治疗神经退行性和神经创伤性疾病的药理学潜力。在过去的二十年中,这种潜力进一步增加,因为已经证明可以通过鼻内给药到达大脑中的神经营养因子靶点,这允许绕过血脑屏障并确保药物通过脑实质快速广泛扩散。自 1980 年以来,临床研究一直在寻求将 NGF 用于治疗周围神经病或 AD 等疾病,为周围和中枢神经系统受损的、NGF 反应性神经元提供营养支持。尽管这些尝试相对失败,主要与药理递送方法的侵入性和潜在有害副作用的发展有关,但最近已经研究了NGF的药理学潜力,首先是眼科病理学,然后是神经创伤的结果。对于后者,开发基于 NGF 的治疗方案的基本原理是基于:NGF 对中枢胆碱能神经元(即神经胶质细胞、免疫细胞和血管内皮细胞)以外的中枢神经系统细胞靶点的作用;内源性NGF对TBI的神经保护作用的临床前和临床证据;使用递送方法(即鼻内接种)靶向中枢神经系统结构的可能性,这保证了低侵入性与令人满意的安全性。
有临床前和临床证据表明,NGF 治疗如何积极影响继发于 TBI 的临床症状的演变。近年来,NGF给药的鼻内途径变得越来越重要,以至于目前它不仅是临床前研究的主题,而且是TBI患者临床试验的主题。表1总结了所有研究鼻内给药NGF对TBI结局影响的手稿。鼻内施用NGF通过嗅神经的前通路和通过三叉神经的后通路有效地扩散到脑实质中。最近的研究已经表明,通过鼻内输送NGF,可以有效地作用于目前所描述的一些与创伤后脑损伤进展相关的分子功能障碍,对于其他一些人来说,仍然有必要开发一条适当的临床前研究路径,然而,这条路径建立在坚实的理性假设之上,这些假设将在下面立即揭示。
Aβ:β淀粉样蛋白;APP:淀粉样蛋白前体蛋白;Bcl2:B细胞淋巴瘤2;NFT:神经原纤维缠结;NGF:神经生长因子;p75NTR:p75神经营养因子受体;
ROS活性氧:活性氧;TLR4:Toll样受体4;TrkA:原肌球蛋白受体激酶A;VEGF:血管内皮生长因子。
鼻内NGF通过调节不同的神经细胞类型来执行其功能:小胶质细胞(绿细胞),星形胶质细胞(蓝细胞)和神经元(黄色细胞)。
(A)NGF对小胶质细胞(黑色实线)的TrkA攻击促进Aβ肽的清除,减少Aβ积累和斑块介导的细胞毒性作用。此外,TrkA / NGF信号传导(黑色实线)抑制TLR4介导的NF-κB途径的激活(灰色虚线),从而下调促炎细胞因子的释放。
(B)NGF介导的p75激活新台币通过阻断(黑色实线)细胞周期蛋白 D1 介导的细胞周期进展到 S 期(灰色虚线)来干扰星形胶质细胞增殖。
(C)NGF具有促血管生成活性,刺激VEGF的产生和释放。
(D)NGF的细胞膜TrkA激发促进Bcl-2的上调和半胱天冬酶-3的下调,限制线粒体介导的细胞凋亡(黑色实线)。此外,暴露于线粒体膜的TrkA受体的挑战会对Ca产生负面影响2+线粒体进入和ROS生产/释放。
(E) NGF 信号传导限制 tau 超磷酸化,抑制神经原纤维缠结 (NFT) 中的聚集。此外,NGF调节APP磷酸化水平,从而控制APP/TrkA结合,进而通过掩盖β和α分泌酶切割位点,限制Aβ斑块的形成。黑色实线表示NGF对受体攻击的直接作用;灰色虚线表示由NGF作用改变的途径。
鼻内给药NGF (IN-NGF)在TBI临床前模型中(表1)表明,通过这种药理学工具,可以改变疾病的进程,并可能避免不仅折磨患者而且折磨其家人和护理人员的残疾和痛苦的发展。如表1中总结,只有四分之一的临床前研究发现IN-NGF不能有效改善TBI诱导的缺陷。相反,在接受TBI的大鼠中进行IN-NGF可以改善Aβ沉积,运动活性和空间记忆,以减轻脑水肿的形成,同时减少炎性细胞因子的产生和由线粒体对创伤的反应介导的细胞凋亡,以及通过抑制糖原合酶激酶激酶-3β活性来抵消tau的过度磷酸化. 在所有这些研究中,NGF 是在创伤附近(紧接在创伤之前或之后)施用的。到目前为止报告的临床数据是通过治疗创伤几个月后的稳定和慢性症状获得的。该研究强调了IN-NGF如何改善灌注,代谢和脑功能的参数(通过分析脑电图测量),即使在脑损伤和严重残疾的发展之后也是如此。然而,希望未来基于NGF的TBI药理学将被开发为重症监护病房的工具,其中可以利用NGF的神经保护潜力来避免创伤损伤的扩散以及随之而来的严重残疾的发展。迄今为止发表的临床数据显示了IN-NGF如何恢复脑灌注,以及重新激活脑细胞的代谢活动,这种活动在创伤后被削弱。尽管有这些有希望的数据,但单纯的代谢再激活可能不足以恢复连接,从而不足以恢复损伤所涉及的电路的功能。因此,有必要探索鼻内NGF与旨在激活连接特定皮质区域与其皮质下对应物(其中包括皮质纹状体丘脑-皮质环)的回路的疗法之间的关联,以避免或恢复运动和/或认知功能的丧失。目前,通过电流(经颅直流电刺激)或磁电流(经颅磁刺激)的刺激似乎是有希望的,能够改变和/或刺激皮层和特定皮层下区域之间连接的恢复,这种效应可以通过NGF促进的脑代谢和灌注,线粒体功能,神经胶质表型和活性的恢复来促进。
1. Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor:from the early discoveries to the potential clinical use. J Transl Med. 2012;10:239. [PMC free article] [PubMed] [Google Scholar]
2. Atkins CM, Falo MC, Alonso OF, Bramlett HM, Dietrich WD. Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neurosci Lett. 2009;459:52–56. [PMC free article] [PubMed] [Google Scholar]3. Bedogni B, Pani G, Colavitti R, Riccio A, Borrello S, Murphy M, Smith R, Eboli ML, Galeotti T. Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem. 2003;278:16510–16519. [PubMed] [Google Scholar]4. Brown EG, Goldman SM. Traumatic brain injury and α-syn:proceed with caution. Neurology. 2020;94:335–336. [PubMed] [Google Scholar]5. Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The intersection of NGF/TrkA signaling and amyloid precursor protein processing in Alzheimer's disease neuropathology. Int J Mol Sci. 2017a;18:E1319. [PMC free article] [PubMed] [Google Scholar]6. Canu N, Pagano I, La Rosa LR, Pellegrino M, Ciotti MT, Mercanti D, Moretti F, Sposato V, Triaca V, Petrella C, Maruyama IN, Levi A, Calissano P. Association of TrkA and APP is promoted by NGF and reduced by cell death-promoting agents. Front Mol Neurosci. 2017b;10:15. [PMC free article] [PubMed] [Google Scholar]7. Capsoni S, Malerba F, Carucci NM, Rizzi C, Criscuolo C, Origlia N, Calvello M, Viegi A, Meli G, Cattaneo A. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain. 2017;140:201–217. [PMC free article] [PubMed] [Google Scholar]8. Carito V, Pingitore A, Cione E, Perrotta I, Mancuso D, Russo A, Genchi G, Caroleo MC. Localization of nerve growth factor (NGF) receptors in the mitochondrial compartment:characterization and putative role. Biochim Biophys Acta. 2012;1820:96–103. [PubMed] [Google Scholar]9. Carmi L, Alyagon U, Barnea-Ygael N, Zohar J, Dar R, Zangen A. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 2018;11:158–165. [PubMed] [Google Scholar]10. Carpenter KLH, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:112. [PMC free article] [PubMed] [Google Scholar]11. Cattaneo A, Capsoni S. Painless nerve growth factor:a TrkA biased agonist mediating a broad neuroprotection via its actions on microglia cells. Pharmacol Res. 2019;139:17–25. [PubMed] [Google Scholar]12. Chen LW, Horng LY, Wu CL, Sung HC, Wu RT. Activating mitochondrial regulator PGC-1alpha expression by astrocytic NGF is a therapeutic strategy for Huntington's disease. Neuropharmacology. 2012;63:719–732. [PubMed] [Google Scholar]13. Cheng YY, Zhao HK, Chen LW, Yao XY, Wang YL, Huang ZW, Li GP, Wang Z, Chen BY. Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neurosci Res. 2020;157:34–43. [PubMed] [Google Scholar]14. Chiaretti A, Eftimiadi G, Buonsenso D, Rendeli C, Staccioli S, Conti G. Intranasal nerve growth factor administration improves neurological outcome after GBS meningitis. Childs Nerv Syst. 2020;36:2083–2088. [PubMed] [Google Scholar]15. Chiaretti A, Conti G, Falsini B, Buonsenso D, Crasti M, Manni L, Soligo M, Fantacci C, Genovese O, Calcagni ML, Di Giuda D, Mattoli MV, Cocciolillo F, Ferrara P, Ruggiero A, Staccioli S, Colafati GS, Riccardi R. Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury:a case report. Brain Inj. 2017;31:1538–1547. [PubMed] [Google Scholar]16. Colombo E, Farina C. Astrocytes:key regulators of neuroinflammation. Trends Immunol. 2016;37:608–620. [PubMed] [Google Scholar]17. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415. [PMC free article] [PubMed] [Google Scholar]18. Cragnolini AB, Volosin M, Huang Y, Friedman WJ. Nerve growth factor induces cell cycle arrest of astrocytes. Dev Neurobiol. 2012;72:766–776. [PMC free article] [PubMed] [Google Scholar]19. Da Silva Meirelles L, Simon D, Regner A. Neurotrauma:the crosstalk between neurotrophins and inflammation in the acutely injured brain. Int J Mol Sci. 2017;18:1082. [PMC free article] [PubMed] [Google Scholar]20. De Simone R, Ambrosini E, Carnevale D, Ajmone-Cat MA, Minghetti L. NGF promotes microglial migration through the activation of its high affinity receptor:modulation by TGF-beta. J Neuroimmunol. 2007;190:53–60. [PubMed] [Google Scholar]21. Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy dynamics in the brain:contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci. 2019;13:1301. [PMC free article] [PubMed] [Google Scholar]22. Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson's disease. Acta Neuropathol Commun. 2020;8:45. [PMC free article] [PubMed] [Google Scholar]23. Di Pietro V, Lazzarino G, Amorini AM, Signoretti S, Hill LJ, Porto E, Tavazzi B, Lazzarino G, Belli A. Fusion or fission:the destiny of mitochondria in traumatic brain injury of different severities. Sci Rep. 2017;7:9189. [PMC free article] [PubMed] [Google Scholar]24. Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I. Traumatic brain injury induces Tau aggregation and spreading. J Neurotrauma. 2020;37:80–92. [PMC free article] [PubMed] [Google Scholar]25. Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res. 2021;16:1740–1750. [PMC free article] [PubMed] [Google Scholar]26. Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflamm. 2020;17:326. [PMC free article] [PubMed] [Google Scholar]27. Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction:implications for Parkinson's disease. Eur J Neurosci. 2021;53:2946–2959. [PubMed] [Google Scholar]28. Fischer T. Mitochondrial fission after traumatic brain injury. Houston: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses; 2017. [Google Scholar]29. Fodelianaki G, Lansing F, Bhattarai P, Troullinaki M, Zeballos MA, Charalampopoulos I, Gravanis A, Mirtschink P, Chavakis T, Alexaki VI. Nerve growth factor modulates LPS -induced microglial glycolysis and inflammatory responses. Exp Cell Res. 2019;377:10–16. [PubMed] [Google Scholar]30. Gollihue JL, Norris CM. Astrocyte mitochondria:central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res Rev. 2020;59:101039. [PMC free article] [PubMed] [Google Scholar]31. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter GLT-1 reduces regional gliosis and reduces post-traumatic seizures in the rat. J Neurotrauma. 2013;30:1434–1441. [PMC free article] [PubMed] [Google Scholar]32. Graiani G, Emanueli C, Desortes E, Van Linthout S, Pinna A, Figueroa CD, Manni L, Madeddu P. Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of type 1 diabetic mice. Diabetologia. 2004;47:1047–1054. [PubMed] [Google Scholar]33. Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15:27. [PMC free article] [PubMed] [Google Scholar]34. Isaacson LG, Saffran BN, Crutcher KA. Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol Aging. 1990;11:51–55. [PubMed] [Google Scholar]35. Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-βpathology:a link to Alzheimer's disease? Nat Rev Neurosci. 2010;11:361–370. [PMC free article] [PubMed] [Google Scholar]36. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure function impairment and biomarkers of integrity. Fluids Barriers CNS. 2020;17:69. [PMC free article] [PubMed] [Google Scholar]37. Kirkland RA, Saavedra GM, Franklin JL. Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis:evidence for a role in cytochrome c redistribution. J Neurosci. 2007;27:11315–11326. [PMC free article] [PubMed] [Google Scholar]38. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders:the roles of microglia and astrocytes. Transl Neurodegener. 2020;9:42. [PMC free article] [PubMed] [Google Scholar]39. Lama S, Auer RN, Tyson R, Gallagher CN, Tomanek B, Sutherland GR. Lactate storm marks cerebral metabolism following brain trauma. J Biol Chem. 2014;289:20200–20208. [PMC free article] [PubMed] [Google Scholar]40. Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280:40398–40401. [PMC free article] [PubMed] [Google Scholar]41. Li X, Li F, Ling L, Li C, Zhong Y. Intranasal administration of nerve growth factor promotes angiogenesis via activation of PI3K/Akt signaling following cerebral infarction in rats. Am J Transl Res. 2018;10:3481–3492. [PMC free article] [PubMed] [Google Scholar]42. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-α interleukin-1β and interferon-γstimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. 2004;279:49523–49532. [PubMed] [Google Scholar]43. Lin PH, Kuo LT, Luh HT. The roles of neurotrophins in traumatic brain injury. Life (Basel) 2021;12:26. [PMC free article] [PubMed] [Google Scholar]44. Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, Guo R, Liu X. Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci. 2014;345:48–55. [PubMed] [Google Scholar]45. Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X, Sun W, Wang X, Cai Q, Bao Y, Zhou L, Zhang Y, Ge L, Guo R, Liu X. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res. 2013;1493:80–89. [PubMed] [Google Scholar]46. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8:184. [PMC free article] [PubMed] [Google Scholar]47. Manni L, Antonelli A, Costa N, Aloe L. Stress alters vascular-endothelial growth factor expression in rat arteries:role of nerve growth factor. Basic Res Cardiol. 2005;100:121–130. [PubMed] [Google Scholar]48. Manni L, Conti G, Chiaretti A, Soligo M. Intranasal delivery of nerve growth factor in neurodegenerative diseases and neurotrauma. Front Pharmacol. 2021;12:3261. [PMC free article] [PubMed] [Google Scholar]49. Mannix RC, Whalen MJ. Traumatic brain injury microglia and beta amyloid. Int J Alzheimers Dis. 2012;2012:608732. [PMC free article] [PubMed] [Google Scholar]50. Marina N, Christie IN, Korsak A, Doronin M, Brazhe A, Hosford PS, Wells JA, Sheikhbahaei S, Humoud I, Paton JFR, Lythgoe MF, Semyanov A, Kasparov S, Gourine AV. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat Commun. 2020;11:131. [PMC free article] [PubMed] [Google Scholar]51. Martorana F, Gaglio D, Bianco MR, Aprea F, Virtuoso A, Bonanomi M, Alberghina L, Papa M, Colangelo AM. Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis. 2018;9:391. [PMC free article] [PubMed] [Google Scholar]52. Minnone G, Soligo M, Caiello I, Prencipe G, Manni L, Marafon DP, Magni-Manzoni S, Manzo A, Benedetti F, Bracci-Laudiero L. ProNGF-p75NTR axis plays a proinflammatory role in inflamed joints:a novel pathogenic mechanism in chronic arthritis. RMD Open. 2017;3:e000441. [PMC free article] [PubMed] [Google Scholar]53. Mira RG, Lira M, Cerpa W. Traumatic brain injury:mechanisms of glial response. Front Physiol. 2021;12:1748. [PMC free article] [PubMed] [Google Scholar]54. Montroull LE, Rothbard DE, Kanal HD, D'Mello V, Dodson V, Troy CM, Zanin JP, Levison SW, Friedman WJ. Proneurotrophins induce apoptotic neuronal death after controlled cortical impact injury in adult mice. ASN Neuro. 2020;12:1759091420930865. [PMC free article] [PubMed] [Google Scholar]55. Moussaud S, Jones DR, Moussaud-Lamodière EL, Delenclos M, Ross OA, McLean PJ. Alpha-synuclein and tau:teammates in neurodegeneration? 2014;Mol Neurodegener9:43. [PMC free article] [PubMed] [Google Scholar]56. Nadler Y, Alexandrovich A, Grigoriadis N, Hartmann T, Rao KSJ, Shohami E, Stein R. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia. 2008;56:552–567. [PubMed] [Google Scholar]57. Nag S, Eskandarian MR, Davis J, Eubanks JH. Differential expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-B after brain injury. J Neuropathol Exp Neurol. 2002;61:778–788. [PubMed] [Google Scholar]58. Ng SY, Lee AYW. Traumatic brain injuries:pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528. [PMC free article] [PubMed] [Google Scholar]59. Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow drainage of Aβand cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun. 2021;9:12. [PMC free article] [PubMed] [Google Scholar]60. Nuydens R, Dispersyn G, de Jong M, van den Kieboom G, Borgers M, Geerts H. Aberrant tau phosphorylation and neurite retraction during NGF deprivation in PC12 cells. Biochem Biophys Res Commun. 1997;240:687–691. [PubMed] [Google Scholar]61. Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res. 2000;119:139–153. [PubMed] [Google Scholar]62. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33:2499–2508. [PMC free article] [PubMed] [Google Scholar]63. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system:expression and properties in neurodegeneration and injury. Front Physiol. 2019;10:486. [PMC free article] [PubMed] [Google Scholar]64. Ramos-Cejudo J, Wisniewski T, Marmar C, Zetterberg H, Blennow K, Leon MJd, Fossati S. Traumatic brain injury and Alzheimer's disease:the cerebrovascular link. EBioMedicine. 2018;28:21–30. [PMC free article] [PubMed] [Google Scholar]65. Rasband MN. Glial contributions to neural function and disease. Mol Cell Proteomics. 2016;15:355–361. [PMC free article] [PubMed] [Google Scholar]66. Rizzi C, Tiberi A, Giustizieri M, Marrone MC, Gobbo F, Carucci NM, Meli G, Arisi I, D'Onofrio M, Marinelli S, Capsoni S, Cattaneo A. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395–1416. [PMC free article] [PubMed] [Google Scholar]67. Sadot E, Heicklen-Klein A, Barg J, Lazarovici P, Ginzburg I. Identification of a tau promoter region mediating tissue-specific-regulated expression in PC12 cells. J Mol Biol. 1996;256:805–812. [PubMed] [Google Scholar]68. Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C. Nerve growth factor supplementation reverses the impairment induced by Type 1 diabetes of hindlimb post-ischaemic recovery in mice. Diabetologia. 2004;47:1055–1063. [PubMed] [Google Scholar]69. Sebastiani A, Golz C, Werner C, Schafer MK, Engelhard K, Thal SC. Proneurotrophin binding to P75 neurotrophin receptor (P75ntr) is essential for brain lesion formation and functional impairment after experimental traumatic brain injury. J Neurotrauma. 2015;32:1599–1607. [PubMed] [Google Scholar]70. Shandra O, Winemiller AR, Heithoff BP, Munoz-Ballester C, George KK, Benko MJ, Zuidhoek IA, Besser MN, Curley DE, Edwards GF, Mey A, Harrington AN, Kitchen JP, Robel S. Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. J Neurosci. 2019;39:1944–1963. [PMC free article] [PubMed] [Google Scholar]71. Shen LL, Mañucat-Tan NB, Gao SH, Li WW, Zeng F, Zhu C, Wang J, Bu XL, Liu YH, Gao CY, Xu ZQ, Bobrovskaya L, Lei P, Yu JT, Song W, Zhou HD, Yao XQ, Zhou XF, Wang YJ. The ProNGF/p75NTR pathway induces tau pathology and is a therapeutic target for FTLD-tau. Mol Psychiatry. 2018;23:1813–1824. [PubMed] [Google Scholar]72. Simmons EC, Scholpa NE, Schnellmann RG. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol. 2020;329:113309. [PMC free article] [PubMed] [Google Scholar]73. Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–191. [PMC free article] [PubMed] [Google Scholar]74. Simpson DSA, Oliver PL. ROS generation in microglia:understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel) 2020;9:743. [PMC free article] [PubMed] [Google Scholar]75. Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromol Med. 2003;4:59–72. [PubMed] [Google Scholar]76. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling neuroprotection and neural repair. Annu Rev Neurosci. 2001;24:1217–1281. [PubMed] [Google Scholar]77. Stefanis L, Kholodilov N, Rideout HJ, Burke RE, Greene LA. Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J Neurochem. 2001;76:1165–1176. [PubMed] [Google Scholar]78. Takahashi S. Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cells. 2022;11:813. [PMC free article] [PubMed] [Google Scholar]79. Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system:pharmacokinetic considerations. Clin Pharmacokinet. 2001;40:907–946. [PubMed] [Google Scholar]80. Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X. Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats. Brain Res. 2012;1440:47–55. [PubMed] [Google Scholar]81. Tong M, Dong M, de la Monte SM. Brain insulin-like growth factor and neurotrophin resistance in Parkinson's disease and dementia with Lewy bodies:potential role of manganese neurotoxicity. J Alzheimers Dis. 2009;16:585–599. [PMC free article] [PubMed] [Google Scholar]82. van Landeghem FKH, Weiss T, Oehmichen M, von Deimling A. Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma. 2006;23:1518–1528. [PubMed] [Google Scholar]83. Yan X, Uronen RL, Huttunen HJ. The interaction of α-Syn and Tau:a molecular conspiracy in neurodegeneration? Semin Cell Dev Biol. 2020;99:55–64. [PubMed] [Google Scholar]84. Young J, Pionk T, Hiatt I, Geeck K, Smith JS. Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not. Brain Res Bull. 2015;115:17–22. [PubMed] [Google Scholar]85. Zakarya R, Sapkota A, Chan YL, Shah J, Saad S, Bottle SE, Oliver BG, Gorrie CA, Chen H. Nitroxides affect neurological deficits and lesion size induced by a rat model of traumatic brain injury. Nitric Oxide. 2020;97:57–65. [PubMed] [Google Scholar]86. Zbesko JC, Nguyen TVV, Yang T, Frye JB, Hussain O, Hayes M, Chung A, Day WA, Stepanovic K, Krumberger M, Mona J, Longo FM, Doyle KP. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol Dis. 2018;112:63–78. [PMC free article] [PubMed] [Google Scholar]87. Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18:62. [PMC free article] [PubMed] [Google Scholar]88. Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q. Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol. 2003;14:217–224. [PubMed] [Google Scholar]89. Zhu M, Huang X, Shan H, Zhang M. Mitophagy in traumatic brain injury:a new target for therapeutic intervention. Oxid Med Cell Longev. 2022;2022:4906434. [PMC free article] [PubMed] [Google Scholar]