第一作者:华南农业大学 Ruiqi Gao, Rongchen Shen, Can Huang
通讯作者:华南农业大学 李鑫,湖北文理学院 梁桂杰,郑州大学 张鹏
DOI:https://doi.org/10.1002/anie.202414229
氢键有机框架(HOFs)在光催化方面具有重要的应用潜力。然而,电子空穴分离效率低,稳定性有限,制约了其在水裂解光催化析氢中的实际应用。本文采用快速自组装溶液分散的方法,成功建立了HOF- H4TBAPy (Py-HOF,H4TBAPy代表1,3,6,8-四(对苯甲酸)芘)与Py-COF之间的新型双芘基超分子HOF/COF 2D/2D S型异质结。实验和理论研究证实,两种晶体多孔材料的尺寸匹配使得集成异质结构材料具有丰富的表面反应位点、强相互作用和增强的S-scheme内置电场,从而显著提高光生电荷载流子分离效率和稳定性。值得注意的是,最佳HOF/COF异质结的光催化析氢速率为390.68 mmol g−1 h−1,是纯Py-HOF的2.28倍,是纯COF的9.24倍。这些发现精确地获得了宝贵的原子尺度见解,以巧妙地设计双芘基S型异质结。这项工作为在HOF基半导体上形成超分子S-scheme异质结提供了一个创新的视角,为设计高效利用太阳能的强大强耦合S-scheme内置电场提供了一种方法。
Figure 1. (a) Schematic illustration of synthesizing HOF/COF sample and structure of Py-HOF, Py-COF and Py-HOF/COF. (b) The experimental and simulated PXRD patterns of Py-HOF, Py-COF and Py-HOF/COF
Figure 2. HRTEM images of (a) Py-HOF and (b) Py-COF. (c) TEM image of HOF/COF. (d) FTIR spectra, (e) N2 adsorption and desorption isotherms, (f) pore size distributions calculated by non-local density functional theory (NLDFT) model and (g) UV/Vis DRS spectra for Py-HOF, Py-COF and HOF/COF. (h) Tauc plots and (i) estimated energy band structure of Py-HOF and Py-COF.
Figure 3. (a) Time profiles of photocatalytic hydrogen generation. (b) Average hydrogen evolution rate. (c) Comparison of the hydrogen evolution rates. (d) Comparison of the hydrogen evolution rate of HOF/COF with different amounts of Pt cocatalysts. (e) The apparent quantum yield of 10 mg HOF/COF.(f) Recycling stability tests of Py-HOF, Py-COF and HOF/COF. (g) Transient photocurrent spectra. (h) Nyquist plots of EIS. (i) The photocatalytic H2 production rate of HOF/COF with Pt as the ccocatalystnd reported photocatalysts.
Figure 4. The fs-TA spectra at different decay time (in ethylene glycol) of (a) Py-HOF, (b) Py-COF and (c) HOF/COF. Pseudo-color images of fs-TA spectra for (d) Py-HOF, (e) Py-COF and (f) HOF/COF, and corresponding decay kinetics curves of (g) Py-HOF, (h) Py-COF and (i) HOF/COF.
Figure 5. Surface potentials of (a) Py-HOF, (b) Py-COF and (c) HOF/COF. HOMO/LUMO energy track of (d) Py-HOF and (e) Py-COF. (f) Top view and side view of the charge density difference (CDD) of the HOF/COF. (g) Photocatalytic reaction mechanism of S-scheme heterojunction for HOF/COF.
2D/2D Hydrogen-Bonded Organic Frameworks/Covalent Organic Frameworks S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution
https://doi.org/10.1002/anie.202414229