第一作者:常州大学 Xiaobo Luo、Shiyuan Zhou
通讯作者:常州大学 顾培洋、刘广峰、周仕元
DOI:https://doi.org/10.1002/adfm.202415244
通过调节分子结构实现包括氧还原反应和水氧化反应在内的全反应是实现过氧化氢(H2O2)高效光合作用的一种有前景的策略,但仍是一个挑战。本文合成了具有光氧化还原结构的三苯胺和萘酰亚胺基共轭多孔聚合物,然后通过后改性策略引入磺酸基(─SO3H)和季铵基,分别制备了NI-TPA-NI-SO3H和NI-TPA-NI-N两种光催化剂。引入带电荷官能团提高了SO3H的亲水性和氧(O2)吸附性,此外,SO3H通过氢键进一步稳定了吸附的O2,加速了光生载流子分离和电子/质子传递,使H2O2能够进行充分的反应光合作用。因此,NI-TPA-NI- SO3H在有效的电荷分离、稳定的O2吸附和加速的质子耦合电子转移的驱动下,在三种光催化剂中表现出最高的光驱动H2O2产率,达到3.40 mmol g−1 h−1,是NI-TPA-NI的4.9倍。值得注意的是,在乙二胺四乙酸二钠盐的存在下,其反应速率显著提高到14.5 mmol g−1 h−1,优于目前所报道的大多数有机光催化剂。
Scheme 1. The synthetic procedure toward NI-TPA-NI, NI-TPA-NI-SO3H, and NI-TPA-NI-N.
Figure 1. The a) FT-IR spectra, b) ss-13C NMR spectra, c) zeta potentials, d) XPS spectra of NI-TPA-NI-SO3H and NI-TPA-NI-N; e) O 1s and f) S 2p high-resolution XPS spectra of NI-TPA-NI-SO3H.
Figure 2. The a) Tauc’s plots, b) photocurrents under visible light irradiation, and c) electrochemical impedance of these three photocatalysts; The Mott–Schottky curves of d) NI-TPA-NI, (e) NI-TPA-NI-SO3H, and f) NI-TPA-NI-N.
Figure 3. a,b) The fs-TA spectra, c,d) the fs-TA signals, and e,f) the TA kinetics fitting of NI-TPA-NI and NI-TPA-NI-SO3H.
Figure 4. The photocatalytic H2O2 production performance of these three photocatalysts a) with different dosages, b) under different pH conditions and c) at different atmospheres; The H2O2 production rates of d) NI-TPA-NI, e) NI-TPA-NI-SO3H and f) NI-TPA-NI-N in the presence of diverse hole scavengers at O2 atmosphere, E = EDTA-2Na; g) The AQY of NI-TPA-NI-SO3H at different wavelengths; h) Comparison of these three photocatalysts with other reported photocatalysts in H2O2 production rate; i) Recyclability and stability tests of NI-TPA-NI-SO3H and NI-TPA-NI-N within ten cycles.
Figure 5. The H2O2 production rates of a) NI-TPA-NI, b) NI-TPA-NI-SO3H and c) NI-TPA-NI-N in the presence of diverse quenching agents in O2 atmosphere; d) DMPO-•O2−, e) DMPO-•OH, f) TEMPO-h+ and g) TEMP-1O2 ESR spectra of NI-TPA-NI-SO3H with increasing irradiation time; h) The rotating disk electrode voltammograms of these three photocatalysts; i) The in situ DRIFTS spectra of NI-TPA-NI.
Figure 6. Potential adsorption sites of a)NI-TPA-NI, b) NI-TPA-NI-SO3H, and c)NI-TPA-NI-N; d) TheO2 adsorption energy of different sites; e) Diagram of free energy for the ORR processes; f) Illustration of key steps during ORR and WOR pathways for NI-TPA-NI-SO3H.
Functionalized Modification of Conjugated Porous Polymers for Full Reaction Photosynthesis of H2O2
https://doi.org/10.1002/adfm.202415244