利用二氧化碳作为碳源生产可再生的高价值化学品和燃料,是一项减缓全球变暖的战略。在CO2电还原(CO2RR)得到的产品中,乙烯和乙醇由于其在工业生产中的应用而受到了关注。然而,在CO2RR过程中,CO2和H2O在多步质子-电子转移过程中的有效活化带来了重大挑战,包括活性降低和对目标产物的选择性降低。因此,提高电催化CO2RR的选择性,特别是对C2+产物的选择性,是推动CO2RR工业应用的关键目标。CO2RR过程主要通过经历CO2活化形成*CO中间体和随后的C-C偶联反应。尽管分子间C-C耦合机理仍有争议,但普遍认为增加Cu表面*CO的覆盖率会促进C-C耦合,从而提高对C2+产物的选择性。因此,各种策略,包括通过额外活性位点串联催化生成CO,通过限制效应阻止CO扩散,或CO/CO2共投料增加CO的局部浓度来提高CO2RR。除了将CO2活化为*CO之外,由于水在该反应中的复杂作用,CO2RR中另一个关键是水的活化和解离。通常,水解离被认为是CO2RR中一个不利的过程,会导致竞争性析氢反应(HER)。因此,人们努力通过抑制水分子靠近电极来提高CO2RR的选择性。同时,水也可能作为CO2RR中质子耦合电子转移的质子源,促进*CO的氢化反应。根据催化剂结构的不同,生成的*CHO中间体将进一步发生氢化或C-C偶联,从而导致产物分布差异很大。这些复杂的效应极大地限制了对水活化如何参与CO2还原和影响C-C耦合过程以产生C2+产物的深入理解。因此,精确调节水解离以实现高选择性的CO2电催化还原为C2+产物仍然是一个重大挑战。
1. 通过在Cu表面修饰富N-H分子,促进水解离和不对称C-C偶联,实现了高选择性的CO2电化学还原为乙烯和乙醇。2. 直接光谱证据和密度泛函理论计算表明,富N-H分子通过氢键相互作用加速了界面水的解离,生成的氢促进了*CO向*CHO的转化。使得有效的不对称*CHO-*CO偶联到C2产物,其法拉第效率(FE)比未改性催化剂高30%。此外,通过调控Cu表面调节*CHO/*CO覆盖率,可以切换C2产物和CH4选择性。3. 这些机理见解进一步指导了用富N-H分子直接修饰Cu2O纳米立方的开发,在800 mA cm-2的电流密度下获得了85.7%的C2产物(主要是乙烯和乙醇)FEs,并且在接近工业条件下具有优异的稳定性。
Figure 1. (a) Schematic illustration of the CO2RR on DAT-modified Cu surfaces. (b) Schematic illustration of the preparation of DAT-modified Cu catalysts via electrodeposition. (c) SEM, (d) HADDF (high-angle annular dark field) STEM, and (e) EDS elemental mapping images of Cu-DAT. (f) XRD patterns of Cu and Cu-DAT catalysts. (g) Mass spectra of Cu-DAT. (h) XPS spectra of N 1s for Cu and Cu-DAT. (i) Cu LMM Auger spectra of Cu and Cu-DAT. (j) Charge density difference analysis and Bader charge analysis of DAT on Cu(100). (图片来源:J. Am. Chem. Soc.)
Figure 2. CO2RR performance in an H-cell with a 0.1 M KHCO3 solution.(图片来源:J. Am. Chem. Soc.)
Figure 3. (a) In situ SERS spectra of the CO2RR on Cu-DAT in 0.1 M KHCO3 saturated with CO2. (b) Comparison of the SERS spectra of CO2RR on Cu-DAT in 0.1 M KHCO3 with CO2, D2O, or 13CO2 at 0.15 V. (c) Comparison of the SERS spectra of intermediates species *OH in 12CO2/H216O, 12CO2/D216O, 13CO2/H216O, and 12CO2/H218O. (d) Schematic diagram of the CO2RR pathway for Cu-DAT. (e) In situ SERS spectra of CO2RR on Cu in 0.1 M KHCO3 saturated with CO2.(图片来源:J. Am. Chem. Soc.)
Figure 4. (a) OH– adsorption peaks of Cu-DAT and Cu-DAT-14. The inset shows the exposure ratios of different facets, quantified by the OH– adsorption. (b) Faradaic efficiency of products for Cu-DAT-14. (c) In situ SERS spectra of the CO2RR on Cu-DAT-14. (d) Relative faradaic efficiency of C2/C1 and Raman intensity of *CHO/*CO for Cu, Cu-DAT, and Cu-DAT-14.(图片来源:J. Am. Chem. Soc.)
Figure 5. (a) Free energy and activation energy for H2O dissociation with or without DAT adsorption on Cu(100). (b) Free energy and activation energy for *CO hydrogenation to *CHO by surface hydrogen or hydrogen in water on Cu(100). (c) Competitive hydrogenation and coupling pathways for *CHO on the Cu(100) and Cu(111) facets. Free energy diagram toward the dominant product on (d) Cu(100) and (e) Cu(111). (f) Schematic for CO2RR pathways on DAT-modified Cu surfaces. (图片来源:J. Am. Chem. Soc.)
Figure 6. (a) FE of C2 products in the CO2RR at the potential of −1.2 V over commercial Cu and Cu2O nanocubes with or without DAT modifications in an H-cell. (b) Schematic of the flow-cell system. (c) FE of C2 products for the CO2RR on DAT-modified Cu2O nanocubes at different applied current densities in flow cells. (d) FE of C2 products over Cu2O nanocubes and Cu2O nanocubes-DAT at different applied current densities in flow cells. (e) Long-term stability of Cu2O nanocubes and Cu2O nanocubes-DAT at a constant current density of 300 mA cm–2.
Zi-Yu Du, Hua Zhang*, Shisheng Zheng*, Zhou Chen*, Jinxuan Liu*, Jian-Feng Li* et al. Promoting Water Activation via Molecular Engineering Enables Efficient Asymmetric C–C Coupling during CO2 Electroreduction. J. Am. Chem. Soc. 2024.https://doi.org/10.1021/jacs.4c14299微信群统一为先添加小编微信 B297984,再拉大家进群(添加微信时请备注 姓名-学校)。欢迎私信投稿(文章解读、招聘等)