花香和果香:功能、成分、生物合成和调控(上)

文摘   科学   2025-01-22 07:01   上海  

Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.


花香和果香是植物体内重要的挥发性有机化合物。它们被用于防御机制,以及吸引传粉者和种子传播者的机制。此外,它们在经济上对农作物的品质以及香水、化妆品、食品、饮料和制药工业的品质都很重要。花的香味和水果的香味在花和水果中有许多相同的挥发性有机化合物。挥发性化合物分为萜类、苯丙类、脂肪酸衍生物和氨基酸衍生物。许多调控挥发物合成的基因和转录因子已被发现。本文综述了近年来在挥发物功能、组成、生物合成途径和代谢调控等方面的研究进展。我们还讨论了尚未解决的问题和研究前景,为植物VOCs的改进和应用提供了见解。

Introduction  前言

Floral scents and fruit aromas are volatile organic compounds (VOCs) released by plants. These VOCs are lipophilic and characterized by low molecular weights and high melting points. Biosynthesis of VOCs occurs in all plant organs, including seeds, roots, stems, leaves, fruits, and flowers; floral scents and fruit aromas are relevant to our daily lives and have substantial economic value.

花香和果香是植物释放的挥发性有机化合物(VOCs)。这些挥发性有机化合物具有亲脂性,具有低分子量和高熔点的特点。挥发性有机化合物的生物合成发生在所有植物器官中,包括种子、根、茎、叶、果实和花;花香和果香与我们的日常生活息息相关,具有巨大的经济价值

Floral VOCs are important traits of floral scents. The differences and abundances of these VOCs in scents vary widely among flowering plants (Farré-Armengol et al., 2017). According to their origin, biosynthesis, and function, floral scents are classified as terpenoids, phenylpropanoids, fatty acid derivatives and amino acids.

花香挥发性有机化合物是花香的重要特征。开花植物气味中这些挥发性有机化合物的差异和丰度差异很大(Farré-Armengol等人,2017)。根据其来源、生物合成和功能,将花香分为萜类、苯丙类、脂肪酸衍生物和氨基酸

Fruit aroma is a key contributor to fruit quality and acceptance by animal and human. Fruit aroma consists of various chemical compounds (e.g., aldehydes, alcohols, ketones, esters, lactones, and terpenes) (Riu-Aumatell et al., 2004); the presence or absence of certain compounds determines differences among fruit aromas. In a wide range of fruits, the production of volatile compounds beginning from fruit-set to late-ripening is modulated by the accumulation of fruity esters, terpenes, and other compounds.

水果香气是决定水果品质和被动物和人类接受程度的关键因素。水果香气由各种化合物(如醛、醇、酮、酯、内酯和萜烯)组成(Riu-Aumatell等,2004);某些化合物的存在与否决定了水果香气的不同。在各种各样的水果中,挥发性化合物的产生从果实成形到成熟后期,由水果酯、萜烯和其他化合物的积累来调节

In the past decade, numerous studies of floral scents and fruit aromas have improved our understanding of their functions, components, biosynthesis, and regulation. In addition, previous reviews focused on floral scents or fruit aromas separately, whereas both have important volatile components contributing to the economic value of horticultural plants. Therefore, we review recent progress regarding floral scents and fruit aromas, focusing on the functions and compositions of volatiles, the factors and biosynthetic pathways that affect volatiles, and the regulation of their biosynthesis and metabolism.

在过去的十年中,对花香和水果香味的大量研究提高了我们对它们的功能、成分、生物合成和调控的理解。此外,以往的综述主要侧重于花香或果实香气,而两者都具有重要的挥发性成分,有助于园艺植物的经济价值。因此,本文综述了近年来在花香和果香研究中的进展,重点介绍了挥发物的功能和组成、影响挥发物的因素和生物合成途径,以及挥发物的生物合成和代谢调控
Functions 功能

Floral Scent Volatiles  花香挥发物

Floral volatiles attract effective pollinators for sexual reproduction (Schiestl, 2010; Gross et al., 2016). Although some floral VOCs attract a variety of pollinators (broad pollinators) (Schiestl et al., 2003), flowers release volatiles to signal to specific pollinators (Schiestl, 2015). Their selection behavior depends on differences in composition, amount, and emission of floral volatile compounds (Muhlemann et al., 2014). For instance, emitted terpenoids and benzenoids can attract pollinators and repel elective visitors (Farré-Armengol et al., 2013), while the same terpenoid compound may attract one animal but repel another (Eilers et al., 2021). Many flowers offer floral rewards as nectar, pollen or oil products, on which visitors depend (Steiner et al., 2011) but some plants attract pollinators without offering nectar by mimicking the scents and colors of neighboring plants (Kunze, 2001; Schiestl, 2005). High production of VOCs is necessary to guide pollinators to flowers, particularly to overcome the decreased conspicuousness of flowers at night (Muhlemann et al., 2014). β-ocimene is implicated in the attraction of pollinators. For example, in Mirabilis jalapa flowers, the emitted floral scent is dominated by trans-β-ocimene and its emission peaks in the evening, which match flower opening and hawkmoth pollinator activity (Effmert et al., 2005).

花挥发物吸引有效传粉者有性生殖(Schiestl, 2010;Gross et al., 2016)。虽然一些花的挥发性有机化合物吸引了各种传粉媒介(广义传粉媒介)(Schiestl等,2003),但花释放挥发性物质向特定的传粉媒介发出信号(Schiestl, 2015)。它们的选择行为取决于花挥发性化合物的组成、数量和释放量的差异(Muhlemann et al., 2014)。例如,排放的萜类化合物和苯类化合物可以吸引传粉者并排斥选择性访客(farr<s:1> - armengol等人,2013),而相同的萜类化合物可能吸引一种动物,但排斥另一种动物(Eilers等人,2021)。许多花提供花蜜,花粉或精油产品作为它的奖励,使传粉者具有对花的依赖性(Steiner et al., 2011),但有些植物通过模仿邻近植物的气味和颜色来吸引传粉者而不提供花蜜(Kunze, 2001;Schiestl, 2005)。高挥发性有机化合物的产生是引导传粉者到花上的必要条件,特别是为了克服夜间花的色差显著性下降的缺陷(Muhlemann et al., 2014)。β-罗勒烯与吸引传粉者有关。例如,在紫茉莉(Mirabilis jalapa)花中,散发的花香以反式β-罗勒烯为主,其散发的峰值出现在晚上,这与花开放和飞蛾传粉者的活动相匹配(Effmert et al., 2005)。


Other adaptive roles for floral scents include repellents (Piechulla and Pott, 2003; Kessler et al., 2008; Raguso, 2008) and the provision of physiological protection against biotic stresses in plants (Dudareva et al., 2006; Knudsen and Gershenzon, 2006). In plant allelopathy, different VOCs can function as cues to other plants (Caruso and Parachnowitsch, 2016). For instance, in plant-plant communication, plants use volatiles emitted by their neighbors to evaluate their environment, including the presence of herbivores (Heil and Karban, 2010) and competitors (Kegge and Pierik, 2010). Generally, exposure of higher plants to biotic stresses (e.g., herbivore damage) can result in the emission of VOCs to repulse the attack (Arimura and Pearse, 2017) and enhance the response to future attacks (Morrell and Kessler, 2014). Similarly, some flower VOCs can be used in plant allelopathy. For example, the olfactory cues of some non-host plants attract the pollinators of other plants (e.g., Malva moschata and Geranium sanguineum attract Chelostoma rapuncul bees, the pollinator of Campanula spp.) (Burger et al., 2021). However, the compositions of floral scents that attract pollinators or repel herbivores are unclear.

花香的其他适应性作用包括驱避(Piechulla and Pott, 2003;Kessler等人,2008;Raguso, 2008)和提供植物对生物胁迫的生理保护(Dudareva et al., 2006;Knudsen and Gershenzon, 2006)。在植物化感作用中,不同的挥发性有机化合物可以作为寻找其他植物的线索(Caruso和Parachnowitsch, 2016)。例如,在植物与植物之间的交流中,植物利用其邻居排放的挥发物来评估其环境,包括草食动物(Heil and Karban, 2010)和竞争对手(Kegge and Pierik, 2010)的存在。一般来说,高等植物暴露于生物胁迫(例如食草动物的伤害)会导致挥发性有机化合物的排放,以击退攻击(Arimura和Pearse, 2017),并增强对未来攻击的反应(Morrell和Kessler, 2014)。同样,一些花的挥发性有机化合物也可用于植物化感作用。例如,一些非寄主植物的嗅觉线索会吸引其他植物的传粉者(例如,麝香锦葵(Malva moschata)和红花老鹤草(Geranium sanguineum)会吸引风铃草属(Campanula spp)的传粉者Chelostoma rapuncul蜜蜂)(Burger et al., 2021)。然而,吸引传粉者或排斥食草动物的花香成分尚不清楚

Some volatiles have antibacterial properties and function in defense against microbial pathogens (Junker et al., 2011; Huang et al., 2012). Certain defensive functions rely on a single compound, which is more effective than a mixture of compounds (Gershenzon and Dudareva, 2007). A single floral volatile can have multiple roles in flowers. For example, (E)-b-caryophyllene from Arabidopsis thaliana promotes defense against pathogens and enhances pollinator attraction (Huang et al., 2012). In rose geranium (Pelargonium graveolens), β-citronellol is an abundant compound with extensive antibacterial activity (Boukhris et al., 2015). The reported functions of floral scents are listed in Table 1.

一些挥发物具有抗菌特性和防御微生物病原体的功能(Junker et al., 2011;黄等人,2012)。某些防御功能依赖于单一化合物,这比化合物的混合物更有效(Gershenzon和Dudareva, 2007)。单一的花挥发物在花中可以有多种作用。例如,拟南芥(Arabidopsis thaliana)中的(E)-β-石竹烯(caryophyllene)可以促进对病原体的防御,增强对传粉者的吸引(Huang et al., 2012)。在玫瑰天竺葵(Pelargonium graveolens)中,β-香茅醇是一种丰富的具有广泛抗菌活性的化合物(Boukhris et al., 2015)。已报道的花香功能见表1。

TABLE 1. Functions of floral scents. 花香的功能列表

Fruit Aroma Volatiles 果香挥发物

Fruit aroma is a major contributor to fruit quality (color, texture, flavor, and aroma). In the wild, the aroma VOCs released from fruits influence herbivore behavior and attract animal dispersers (Dudareva et al., 2013). For example, fruit bats recognize ripe and non-ripe fruits based on the emitted volatiles (Hodgkison et al., 2007). VOCs have biological activities against bacteria, fungi, and insects. Volatiles extracted from citrus peels (Citrus reticulata Blanco) exhibit significant antifungal and antibacterial activities against pathogenic strains (Sultana et al., 2012). In another citrus species (Citrus hystrix), the essential oils extracted from fruit peels possess antibacterial activity against respiratory bacteria; the most effective components are α-terpineol, terpinene-4-ol, and limonene (Srisukh et al., 2012). The antibacterial activities of fruit VOCs in extracts of lemon (Citrus limonium), sweet lime (Citrus limetta), pomegranate (Punica granatum), apple (Malus domestica), and tomato (Solanum lycopersicum) against pathogenic bacteria isolated from a wound have been reported (Unnisa et al., 2012). Essential oils extracted from Alchornea cordifolia fruit have shown antibacterial activity against Staphylococcus aureus and antifungal activity against Aspergillus niger, while essential oils extracted from Canthium subcordatum fruit have shown antibacterial activity against Bacillus cereusS. aureus, and A. niger (Essien et al., 2015). In strawberry fruit, the antifungal activity of fruit VOCs against Colletotrichum acutatum is contributed by (E)-hex-2-enal (Arroyo et al., 2007). Essential oil components from pepper fruit significantly inhibited the germination of Colletotrichum gloeosporioides; the active compounds were carvacrol, cinnamon oil, citral, trans-cinnamaldehyde, p-cymene, and linalool (Hong et al., 2015). Volatiles isolated from leaves, flowers, and fruits of three opuntia species had antifungal activity against fungal species such as Alternaria solani (Bergaoui et al., 2007). Although fruit VOCs have antibacterial and antifungal activities, the most important function of fruit aroma in horticulture is to attract humans. Indeed, fruit aromas have been selected by horticulture breeding to improve their edible quality and economic value.

水果香气是决定水果品质(颜色、质地、风味和香气)的主要因素。在野外,水果释放的香气挥发性有机化合物会影响食草动物的行为,并吸引动物散布者(Dudareva et al., 2013)。例如,果蝠根据释放的挥发物来识别成熟和未成熟的水果(Hodgkison et al., 2007)。挥发性有机化合物对细菌、真菌和昆虫具有生物活性。从柑橘皮(citrus reticulata Blanco)中提取的挥发物对致病菌株具有显著的抗真菌和抗菌活性(Sultana et al., 2012)。在另一种泰国青柠(citrus hystrix)中,从果皮中提取的精油对呼吸道细菌具有抗菌活性;最有效的成分是α-松油醇、松油烯-4-醇和柠檬烯(Srisukh et al., 2012)。据报道,中国柠檬(Citrus limonium)、白柠檬(Citrus limetta)、石榴(Punica granatum)、海棠(Malus domestica)和番茄(Solanum lycopersicum)提取物中的水果挥发性有机化合物对伤口分离的致病菌具有抗菌活性(Unnisa et al., 2012)。从灯盏花(Alchornea cordifolia)果实中提取的精油显示出对金黄色葡萄球菌和黑曲霉的抗菌活性,而从心形鱼骨木(Canthium subcordatum)果实中提取的精油显示出对蜡样芽孢杆菌、金黄色葡萄球菌和黑曲霉的抗菌活性(Essien et al., 2015)。在草莓果实中,水果挥发性有机化合物对炭疽病菌的抗真菌活性是由(E)-己-2-烯醛贡献的(Arroyo et al., 2007)。辣椒果实精油成分对炭疽病菌萌发有显著抑制作用;活性化合物为香芹酚、肉桂油、柠檬醛、反式肉桂醛、对花香烃和芳樟醇(Hong et al., 2015)。从三种仙人掌属植物的叶、花和果实中分离出的挥发物对真菌有抗真菌活性,如索拉尼链格孢菌(Alternaria solani) (Bergaoui et al., 2007)。虽然水果的挥发性有机化合物具有抗菌和抗真菌活性,但水果香气在园艺中最重要的功能是吸引人。事实上,为了提高水果的食用品质和经济价值,园艺育种已经选择了水果的香味作为育种目标。

Volatile Composition 挥发性成分

Floral Scents 花香

Floral scents consist of a mixture of compounds; they are categorized as terpenoids, phenylpropanoids/benzenoids, fatty acids, and amino acids. Terpenoids are the largest class of volatiles and comprise more than 40,000 structures derived from five-carbon isoprene units as monoterpenoids, sesquiterpenoids, apocarotenoids, and others. Phenylpropanoids comprise more than 8,000 metabolites (Dong and Lin, 2021); benzenoids are the second class of VOCs derived from the amino acid phenylalanine. Fatty acids and amino acids are important VOCs present in floral scents and fruit aromas (Negre-Zakharov et al., 2009).

花香由多种化合物混合而成;它们被分类为萜类、苯丙类、脂肪酸和氨基酸。萜类是最大的一类挥发物,由五碳异戊二烯单元衍生的4万多种结构组成,如单萜类、倍半萜类、脱辅基类胡萝卜素等。苯丙素含有8000多种代谢物(Dong and Lin, 2021);苯类化合物是由氨基酸苯丙氨酸衍生的第二类挥发性有机化合物脂肪酸和氨基酸是存在于花香和水果香气中的重要挥发性有机化合物(negrei - zakharov等,2009)。

Rose (Rosa spp.) 玫瑰

Rose is one of the most important ornamental plants for the production of cut flowers and perfumes. Therefore, floral scent is the main economic trait of rose, and some cultivars are classified according to their fragrant components (Du et al., 2019). Rose scents are composed of mixtures of organic compounds. In Bulgarian rose (Rosa damascene) essential oil, the most abundant components are phenethyl alcohol, citronellol, heneicosane, pentadecane, eugenol, methyleugenol, and geraniol (Won et al., 2009; Kiralan, 2015; Koksal et al., 2015). The first rose water (R. damascene) comprised benzoic acid 2-hydroxy-3-methyl butyl ester, geranyl acetate, carbamic acid methyl ester, linalool, eucalyptol, citronellol, geraniol, and methyleugenol (Koksal et al., 2015). In other rose (Rosa L.) species (R. dumalisR. caninaR. dumalis subsp. boissieriR. gallica, and R. hirtissima), the major compounds are aldehydes, alcohols, monoterpenes, and sesquiterpenes (Demir et al., 2014). Moreover, the fragrant rose cultivar “Fragrant Cloud” contains monoterpene alcohols, terpene hydrocarbons, and acetates (Shalit et al., 2004). The predominant scent compounds in the petals of six Hybrid Rugosa roses are phenyl ethyl alcohol, β-citronellol, nerol, and geraniol (Sparinska and Rostoks, 2015). Rose-breeding programs are underway to produce new varieties of floral scents.

玫瑰是制作切花和香水最重要的观赏植物之一。因此,花香是玫瑰的主要经济性状,一些品种根据其香气成分进行分类(Du et al., 2019)。玫瑰的香味是由多种有机化合物混合而成。在保加利亚玫瑰(Rosa damascene)精油中,最丰富的成分是苯乙醇、香茅醇、十六烷、十五烷、丁香酚、甲基丁香酚和香叶醇(Won等人,2009;Kiralan, 2015;Koksal et al., 2015)。第一款玫瑰水(R.Damascene)由苯甲酸2-羟基-3-甲基丁基酯、香叶乙酸酯、氨基甲酸甲酯、芳樟醇、桉油醇、香茅醇、香叶醇和甲基丁香醇组成(Koksal等人,2015年)。在其他玫瑰(Rosa L.)种中(杜马里蔷薇、犬蔷薇、杜马里亚种蔷薇、 高卢蔷薇和R. hirtissima),主要化合物是醛类,醇类,单萜烯和倍半萜烯(Demir et al., 2014)。此外,香玫瑰品种“香云”含有单萜烯醇、萜烯烃和乙酸酯(Shalit et al., 2004)。六种杂交Rugosa玫瑰花瓣中的主要气味化合物是苯乙醇、β-香茅醇、橙花醇和香叶醇(Sparinska和Rostoks, 2015)。玫瑰育种计划正在进行,以产生新的花香品种。

Orchid 兰花

Orchid is the largest family (Orchidaceae) of flowering plants (Julsrigival et al., 2013), comprising 20,000–30,000 species (Khuraijam et al., 2017). Approximately 75% of orchids are fragrant (De et al., 2019). In an economic context, they can be used to produce cut flowers and as potted plants (Khuraijam et al., 2017). The family Orchidaceae is divided into five subfamilies. Epidendroideae is the largest subfamily, comprising approximately 76% of the family (Freudenstein and Chase, 2015). In Epidendroideae, the major aromatic compounds of Thai fragrant orchid species (Rhynchostylis gigantea Ridl., R. gigantea var. harrisonianum Holtt., Vanda coerulea, and Dendrobium parishii Rchb. f.) are nerol, 2,3-dihydrofarnesol, nonanal, and 2-pentadecanone (Julsrigival et al., 2013). The emitted volatiles of Zygopetalum maculatum (an orchid species) are enriched in benzenoids, including O-diethylbenzene, p-diethylbenzene, benzyl acetate, and methyl salicylate; 2-phenylethylacetate is the major phenylpropanoid component (Bera et al., 2018). Cymbidium spp. flowers are rich in cineole, isoeugenol, and (-) selinene (Ramya et al., 2020). Phalaenopsis orchids contain monoterpenes, including linalool and geraniol (Chuang et al., 2017). The scent compounds in Vanda Mimi Palmer (an orchid hybrid) are ocimene, linalool, linalool oxide, and nerolidol as the major terpenoids; the major benzenoids and phenylpropanoids are benzyl acetate, methylbenzoate, phenylethyl acetate, and phenylethanol (Mohd-Hairul et al., 2010). The major components of the floral scents of Ophrys sphegodesOphrys bertolonii, and Neotinea tridentate are hydrocarbons, alcohols, aldehydes, and terpenes (Manzo et al., 2014).

兰花是开花植物中最大的科(兰科)(Julsrigival et al., 2013),包括20,000-30,000种(Khuraijam et al., 2017)。大约75%的兰花是有香味的(De et al., 2019)。在商业背景下,它们可以用来生产切花和盆栽植物(Khuraijam等人,2017)。兰科可分为五个亚科。树兰亚科是最大的亚科,约占该科的76% (Freudenstein and Chase, 2015)。在树兰亚科,泰国香兰花(海南钻喙兰, R. gigantea var. harrisonianum Holtt., 大花万代兰, and 紫瓣石斛)的主要芳香化合物是橙花醇、2,3-二氢法尼醇、壬醛和2-十五酮(julsrigrival等,2013)。轭瓣兰(一种兰花)的挥发物富含苯类化合物,包括邻二乙苯、对二乙苯、乙酸苄酯和水杨酸甲酯;2-乙酸苯乙酯是主要的苯丙类成分(Bera et al., 2018)。大花蕙兰(Cymbidium spp.)的花富含桉叶油素、异丁香酚和(-)芹子烯(Ramya et al., 2020)。蝴蝶兰含有单萜,包括芳樟醇和香叶醇(Chuang et al., 2017)。万代兰(一种兰花杂交品种)的芳香化合物主要为罗勒烯、芳樟醇、氧化芳樟醇和橙花叔醇;主要的苯类和苯丙类是乙酸苄酯、苯甲酸酯、乙酸苯乙酯和苯乙醇(Mohd-Hairul等,2010)。早花蜘蛛兰贝氏蜂兰三齿兰的花香主要成分是碳氢化合物、醇类、醛类和萜烯(Manzo et al., 2014)。

Tulip (Tulipa spp.) 郁金香

The few fragrant tulip cultivars produce a range of floral scents (Oyama-Okubo and Tsuji, 2019). The major scent compounds of tulips (Tulipa L.) cultivars are monoterpenoids (eucalyptol, d-limonene, linalool, trans-β-ocimene, and α-pinene), sesquiterpenoids (α-farnesene, caryophyllene, geranyl acetone, and β-ionone), benzenoids (benzaldehyde, acetophenone, 3,5-dimethoxytoluene, benzyl alcohol, methyl salicylate, and 2-phenyl ethanol), and fatty acid derivatives (decanal, cis-3-hexenol, cis-3-hexenyl acetate, 2-hexenal, and octanal) (Oyama-Okubo and Tsuji, 2013).

少数几种芬芳的郁金香品种会产生一系列花香(Oyama-Okubo和Tsuji, 2019)。郁金香(Tulipa L.)品种的主要气味化合物是单萜类(桉叶油醇、D-柠檬烯、芳樟醇、反式β-罗勒烯和α-蒎烯)、倍半萜类(α-法尼烯、石竹烯、香叶丙酮和β-紫罗兰酮)、苯类(苯甲醛、苯乙酮、3,5-二甲氧基甲苯、苯甲醇、水杨酸甲酯和2-苯乙醇)和脂肪酸衍生物(癸醛、顺式-3-己烯醇、顺式-3-己烯乙酸酯、2-己烯醛和辛醛)(yama- okubo和Tsuji, 2013)。

Peony (Paeonia spp.) 牡丹

Peony (tree and herbaceous peony) includes many Paeoniaceae species and cultivars, which are important ornamental plants with rich fragrances. The major flavoring substances in peony are citronellol, geraniol, and linalool (Song et al., 2018; Wang et al., 2021). In 30 herbaceous peony cultivars, the main compounds are phenyl ethyl alcohol, β-caryophyllene, linalool, nerol, and (R)-citronellol (Song et al., 2018).

牡丹(乔木牡丹和芍药牡丹)包括芍药科多种品种和栽培品种,是一种芳香浓郁的重要观赏植物。牡丹的主要芳香物质是香茅醇、香叶醇和芳樟醇(Song et al., 2018;Wang等人,2021)。30个芍药品种中主要化合物为苯乙醇、β-石竹烯、芳樟醇、橙花醇和(R)-香茅醇(Song et al., 2018)。

Lily (Lilium spp.) 百合

Lilies are commercially important ornamental plants because of their attractive colors and scents (Du et al., 2019). Volatile-emitting lily cultivars (Lilium spp.) release various scent compounds, predominantly three monoterpenoids (1.8-cineole, (E)-b-ocimene and linalool) and one benzenoid (methyl benzoate) (Kong et al., 2017). β-cis-ocimene represents the major component in Lilium spp. “Sweetness” (Aros et al., 2020).

百合因其迷人的颜色和气味而成为商业上重要的观赏植物(Du et al., 2019)。挥发性百合品种(Lilium spp.)释放各种气味化合物,主要是三种单萜类(1,8-桉树脑,(E)-β-桉树烯和芳樟醇)和一种苯类(苯甲酸甲酯)(Kong et al., 2017)。β-顺式罗勒烯是百合“甜味”的主要成分(Aros et al., 2020)。

Water Lily (Family: Nymphaeaceae) 睡莲

Water lily flowers (Nymphaea colorata) release 11 volatiles, comprising terpenoids (sesquiterpenes), fatty acid derivatives (methyl decanoate), and benzenoids (Zhang et al., 2020).

蓝星睡莲(Nymphaea colorata)释放11种挥发物,包括萜类(倍半萜类)、脂肪酸衍生物(癸酸甲酯)和苯类(Zhang et al., 2020)。

Carnation (Dianthus spp.) 康乃馨

Benzenoids are the principal components of carnation flowers in addition to terpenoids and fatty acid derivatives (Kishimoto, 2020). Some scents are described as spicy because they contain eugenols (Kishimoto, 2020). In Dianthus rupicola Biv. (cliffs carnation), phenolic monoterpenes are the predominant components of the essential oil, followed by monoterpene hydrocarbons and oxygen-containing sesquiterpenes (Casiglia et al., 2014). In a carnation species (D. elymaiticus), the essential oil of flowers contains high levels of fatty acid derivatives and terpenoids; the major compounds are (Z)-3-hexenyl acetate, methyl benzoate, β-caryophyllene, and decanal (Azadi and Entezari, 2016).

除萜类化合物和脂肪酸衍生物外,苯类化合物是康乃馨的主要成分(岸本,2020)。有些气味被描述为辛辣,因为它们含有丁香酚(岸本,2020)。在Dianthus rupicola Biv. (悬崖康乃馨)中,酚类单萜是精油的主要成分,其次是单萜烃和含氧倍半萜(Casiglia et al., 2014)。在一种康乃馨(D. elymaiticus)中,花的精油含有高水平的脂肪酸衍生物和萜类;主要化合物为(Z)-3-己烯乙酸酯、苯甲酸甲酯、β-石竹烯和癸醛(Azadi和Entezari, 2016)。

Lavender (Lavandula spp.) 薰衣草

Lavender plants have excellent medicinal and aromatic properties (Guo and Wang, 2020). The major volatiles extracted from lavender essential oil (Lavandula angustifolia Mill) are linalool, linalyl acetate (Venskutonis et al., 1997; Won et al., 2009; Guo and Wang, 2020), 1,8-cineole, and α-terpineol (Tschiggerl and Bucar, 2010; Śmigielski et al., 2013), along with oxygenated derivatives of monoterpenes and monoterpene alcohols (Śmigielski et al., 2013). In L. officinalis, linalyl acetate was the predominant volatile in the essential oils (Xiao et al., 2017). Lavender flower (L. angustifolia) vapor consists of terpene hydrocarbons, oxygenated terpenes, and sesquiterpenes; linalool, terpin-4-ol, and linalyl acetate are predominant (An et al., 2001).

薰衣草植物具有优良的药用和芳香特性(Guo and Wang, 2020)。从薰衣草精油(Lavandula angustifolia Mill)中提取的主要挥发物是芳樟醇、乙酸芳樟酯(Venskutonis et al., 1997;Won et al., 2009;Guo and Wang, 2020), 1,8-桉叶脑和α-松油醇(Tschiggerl and Bucar, 2010;Śmigielski等人,2013),以及单萜烯和单萜烯醇的氧合衍生物(Śmigielski等人,2013)。在officinalis中,乙酸芳樟酯是挥发油中的主要挥发物(Xiao et al., 2017)。薰衣草(L. angustifolia)蒸气由萜烯烃、氧化萜烯和倍半萜烯组成;芳樟醇、松油-4-醇和乙酸芳樟酯占主导地位(An et al., 2001)。

Jasmine (Jasminum spp.) 茉莉

Jasmine flowers are well-known for their pleasant fragrances. In Jasminum species (J. sambacJ. auriculatumJ. grandiflorum, and J. multiflorum), linalool and (3E, 6E)-a-farnesene are the major monoterpene and sesquiterpene, respectively (Bera et al., 2015). J. sambac is a fragrant flower species distributed worldwide. The major compounds of the floral scent are methyl anthranilate, linalool, 4-nonanolide, 4-hexanolide, (E)-2-hexenyl hexanoate, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone (Ito et al., 2002), eugenol, benzyl alcohol, benzyl acetate, benzyl benzoate, methyl salicylate, methyl anthranilate, (Z) 3-hexenyl benzoate, indole, and α-farnesene (Lin et al., 2013; Chen et al., 2017, 2020).

茉莉花以其宜人的香味而闻名。在茉莉属植物(双瓣茉莉、木耳茉莉、素馨茉莉和毛茉莉)中,芳樟醇和(3E, 6E)-α-法尼烯分别是主要的单萜和倍半萜(Bera et al., 2015)。双瓣茉莉是一种分布在世界各地的芳香花卉花香的主要化合物有邻氨基苯甲酸甲酯、芳樟醇、4-壬内酯、4-己内酯、(E)-2-己酸己烯酯、4-羟基-2,5-二甲基-3(2 H)-呋喃酮(Ito et al., 2002)、丁香酚、苯甲醇、乙酸苄酯、苯甲酸苄酯、水杨酸甲酯、邻氨基苯甲酸甲酯、(Z)- 3-己烯苄酯、吲哚和α-法尼烯(Lin et al., 2013);Chen et al., 2017,2020)。

Daffodil (Narcissus spp.)  水仙花

Narcissus floral volatiles and their essential oils are used in the perfume industry (Terry et al., 2021). Chinese daffodil flowers (Narcissus tazetta) contain acetic acid phenethyl ester, E-ocimene, acetic acid benzyl ester, neo-allo-ocimene, allo-ocimene, α-linalool, 1,8 cineole, benzenepropyl acetate, and 3-methyl-2-buten-1-ol acetate as the major VOCs (Melliou et al., 2007; Song et al., 2007; Chen et al., 2013). Monoterpenes are the major VOCs in daffodil (N. pseudonarcissus); β-ocimene and β-myrcene are predominant (Li et al., 2018). In simple and double flower cultivars of Narcissus, the major scent compounds are monoterpenes and benzenoids, particularly cis-β-ocimene and benzyl acetate (Ruíz-Ramón et al., 2014). In the essential oil of N. serotinus, the major component is benzyl acetate; linalool oxides are the main characteristics of this species (Melliou et al., 2007). In two varieties of European Daffodil (N. pseudonarcissus L.), “Isha” and “Acropolis,” the major categories of VOCs are terpenes and ethers; the characteristic aromatic component is β-ocimene (Wang et al., 2013).

水仙花挥发物及其精油被用于香水工业(Terry et al., 2021)。水仙花(Narcissus tazetta)的主要挥发性有机化合物为乙酸苯乙酯、反式-罗勒烯、乙酸苄酯、新异位罗勒烯、异位罗勒烯、α-芳樟醇、1,8桉树脑、乙酸苯丙酯和乙酸3-甲基-2-丁烯-1-酯(Melliou等,2007;Song et al., 2007;陈等人,2013)。单萜是水仙花(N. pseudoarcissus)中主要的挥发性有机化合物;β-罗勒烯和β-月桂烯占主导地位(Li et al., 2018)。在水仙单花和重花品种中,主要的气味化合物是单萜烯和苯类化合物,特别是顺式-β-罗勒烯和乙酸苄酯(Ruíz-Ramón et al., 2014)。在迟花水仙精油中,主要成分为乙酸苄酯;芳樟醇氧化物是该物种的主要特征(Melliou et al., 2007)。在欧洲水仙(黄水仙)的两个品种“Isha”和“Acropolis”中,挥发性有机化合物的主要类别是萜烯和醚;其特征芳香成分为β-罗勒烯(Wang et al., 2013)。

Hyacinth (Hyacinths spp.)  风信子

In Hyacinth (Hyacinths orientals) varieties, the major components of floral scents are terpenes, esters, and alcohols; the characteristic aromatic components are acetoxytoluene, β-ocimene, β-myrcene, and β-phenethyl alcohol (Wang et al., 2013).

在风信子(Hyacinths orientals)品种中,花香的主要成分是萜烯、酯类和醇类;其特征芳香成分为乙酰氧基甲苯、β-罗勒烯、β-月桂烯和β-苯乙醇(Wang et al., 2013)。

Most studies of floral scents have focused on VOC profiles. However, the components of specific species (cultivars) should be evaluated by mass spectrometry and a sensory evaluation of floral fragrances. The chemical compositions of floral scents of major flower species are listed in Supplementary Table 1.

大多数关于花香的研究都集中在挥发性有机化合物的特征上。但是,特定品种的成分应该通过质谱分析和花香感官评价来评估。主要花卉种类花香的化学成分列于补充表1。

Fruit Aroma 果香

According to the modes of fruit development, there are three main groups (botanical classification): simple fruits, aggregate fruits, and multiple (or composite) fruits (Singh, 2004). However, based on the yield and commercial values, the fruits are normally classified into berries, melons, citrus fruits, drupes (stone fruits), pomes (apples and pears), and tropical fruits. Most fruits release a wide range of VOCs, which determine their aroma profiles. The VOCs released from fruits are esters, ketones, aldehydes, lactones, alcohols, and terpenoids (Ahmed et al., 2013). C10 monoterpenes and C15 sesquiterpenes are abundant and key determinants of the characteristic aroma of fruits (Ahmed et al., 2013). Each fruit species has a distinctive aroma based on the mixture of fruit VOCs (Tucker, 1993; Baietto and Wilson, 2015).

根据果实发育模式,主要有三大类(植物学分类):单果、聚合果和多果(或复合)果(Singh, 2004)。然而,根据产量和商业价值,水果通常分为浆果、甜瓜、柑橘类水果、核果(核果)、梨(苹果和梨)和热带水果。大多数水果都会释放大量的挥发性有机化合物,这决定了它们的香气特征。水果释放的挥发性有机化合物有酯类、酮类、醛类、内酯类、醇类和萜类(Ahmed et al., 2013)。C10单萜烯和C15倍半萜烯含量丰富,是水果特征香气的关键决定因素(Ahmed et al., 2013)。每一种水果都有一种基于水果挥发性有机化合物混合物的独特香气(Tucker, 1993;Baietto和Wilson, 2015)。

Banana (Musa spp.) 香蕉

Banana is the main fruit traded globally (Alam, 2014). Almost 200 volatile components are found in banana fruit (Alam, 2014). Hexanal is the major volatile compound in most banana cultivars. The typical volatile compounds are (E)-2-hexenal and acetoin (Cavendish), (E)-2-hexenal and hexanal (Plantain), and 2,3-butanediol (Frayssinette) (Aurore et al., 2011). In addition, VOC composition may change during fruit maturation. During the ripening of two banana cultivars (“Brazilian” and “Fenjiao”), the predominant volatile components are isoamyl acetate, butanoic acid, 3-methyl-3-methylbutyl ester, hexanal, trans-2-hexenal, and 1-hexanol. However, octanoic acid and propanoic acid 2-methylbutyl ester are only detected in Fenjiao (Zhu et al., 2018a).

香蕉是全球贸易的主要水果(Alam, 2014)。在香蕉果实中发现了近200种挥发性成分(Alam, 2014)。己醛是大多数香蕉品种的主要挥发性化合物。典型的挥发性化合物有(E)-2-己烯醛和乙偶姻(香芽蕉)、(E)-2-己烯醛和己醛(芭蕉)和2,3-丁二醇(弗赖西内特) (Aurore et al., 2011)。此外,挥发性有机化合物的组成可能在果实成熟过程中发生变化。在两个香蕉品种(“巴西”和“粉椒”)的成熟过程中,主要挥发性成分是乙酸异戊酯丁酸3-甲基-3-甲基丁基酯己醛反式-2-己烯醛1-己醇。而辛酸和丙酸2-甲基丁酯仅在粉椒中检测到(Zhu et al., 2018a)。

Apple (Malus domestica) 苹果

More than 300 aromatic compounds have been identified in apples, including esters, alcohols, aldehydes, acids, ketones, and terpenoids (Yang S. et al., 2021). Esters are the most important determinant of the aroma of ripe apples, followed by alcohols (Espino-Díaz et al., 2016). Although the aroma is cultivar-specific, eight common VOCs are detected in 40 apple cultivars: esters (hexyl butyrate, hexyl 2-methylbutyrate and hexyl hexanoate), hexanal, (E)-2-hexenal, 1-hexanol, estragole, and α-farnesene (Yang S. et al., 2021). In addition, esters such as butyl acetate, hexyl acetate, and 2-methyl butyl acetate influence the aroma profiles of the apple cultivars “Discovery” and “Prima” (Dunemann et al., 2009). There are more than 7,500 cultivars of culinary and eating apples (Elzebroek and Wind, 2008); thus, more aroma components must be identified.

在苹果中发现了300多种芳香化合物,包括酯类、醇类、醛类、酸类、酮类和萜类(Yang S. et al., 2021)。酯是成熟苹果香气最重要的决定因素其次是醇(Espino-Díaz et al., 2016)。虽然苹果的香气是品种特有的,但在40个苹果品种中检测到8种常见的挥发性有机化合物:酯类(丁酸己酯、2-甲基丁酸己酯和己酸己酯)、己醛(E)-2-己烯醛1-己醇草蒿脑α-法尼烯(Yang S. et al., 2021)。此外,乙酸丁酯、乙酸己酯和乙酸2-甲基丁酯等酯类会影响苹果品种“发现”和“Prima”的香气特征(Dunemann et al., 2009)。有超过7500个品种的烹饪和食用苹果(Elzebroek和风,2008);因此,必须识别更多的香气成分。

Grape (Vitis vinifera) 葡萄

Grape is of great commercial significance worldwide; it is divided into table (fresh consumption), juice, wine, and dried (raisins) types. The components of three varieties (Merlot, Cabernet Sauvignon, and Feteasca Neagra) of wine grape are: butanoic acid, tropilidene, methyl ester, 2-ethyl heptanoic acid, 2,4-dimethyl heptane, 2,4-dimethyl-1-heptene, n-nonane, 4-methyl octane, 2-propyl-1-pentanol, 6-methyl tridecane, 3,5-dimethyl octane, n-decane, O-cymene, terpinen-4-ol, undecane, linalool, and estragole (Palade and Popa, 2016). During development of muscadine grape (Vitis rotundifolia), myrcenol, β-ocimene, and L-limonene are common components at the first stage (green). Nonanal, decanal, and β-citronellol are detected at the second stage (soft and translucent and skin pink/red); at the third stage (purple to black), butyl-2-butenoate, propyl acetate, hexyl acetate, hexyl-2-butenoate, ethyl trans-2-butenoate, ethyl acetate, 1-octanol, butyl acetate, ethyl hexanoate, and β-citral are detected (Lee et al., 2016). The most common VOCs in white “Albariño” grapes are (E)-2-hexenal, (Z)-2-hexanol, 1-hexanol, benzaldehyde, phenylethanal, 2-phenylethanol, and cis pyran linalool oxide (Ripoll et al., 2017). In table grape cultivars (Centennial Seedless, Italia, Italia Rubi, Chasselas, Alphonse Lavallée, and Muscat de Hambourg), (E)-2-hexenal and hexanal are the two major volatiles, whereas monoterpenols are specific to Muscat varieties (Aubert and Chalot, 2017).

葡萄在世界范围内具有重要的商业意义;它分为餐食葡萄(新鲜消费),果汁,葡萄酒和干(葡萄干)类型。酿酒葡萄的三个品种(梅洛、赤霞珠和尼格拉费特卡)的成分是:丁酸、环庚三烯、甲酯、2-乙基庚酸、2,4-二甲基庚烷、2,4-二甲基-1-庚烯、正壬烷、4-甲基辛烷、2-丙基-1-戊醇、6-甲基十三烷、3,5-二甲基辛烷、正癸烷、o -伞花烃、松油烯-4-醇、十一烷、芳樟醇和草蒿脑(Palade和Popa, 2016)。在麝香葡萄(Vitis rotundifolia)的发育过程中,月桂烯醇、β-罗勒烯和L-柠檬烯是第一阶段(青色葡萄)的常见成分。第二阶段检测壬醛、癸醛和β-香茅醇(柔软半透明,皮肤呈粉红色/红色葡萄);在第三阶段(紫色到黑色),检测到2-丁烯酸丁酯、乙酸丙酯、乙酸己酯、2-丁烯酸己酯、反式2-丁烯酸乙酯、乙酸乙酯、1-辛醇、乙酸丁酯、己酸乙酯和β-柠檬醛(Lee et al., 2016)。白色“Albariño”葡萄中最常见的挥发性有机化合物是(E)-2-己烯醛、(Z)-2-己醇、1-己醇、苯甲醛、苯乙醇、2-苯乙醇和顺式吡喃芳樟醇氧化物(Ripoll et al., 2017)。在鲜食葡萄品种(无核白鸡心、意大利、意大利卢比、莎斯拉、阿方斯莱弗宁和汉堡麝香)中(E)-2-己烯醛和己醛是两种主要挥发物,而单萜醇则是麝香葡萄品种所特有的(Aubert和Chalot, 2017)。

Strawberry (Fragaria spp.) 草莓

Several compounds are found at high concentrations (such as ketones and long-chain acids) in VOCs of strawberry, whereas several characteristic VOCs such as furanones (particularly 4-methoxy-2,5-dimethyl-3(2H)-furanone), esters (ethyl butanoate, ethyl hexanoate, methyl butanoate, and methyl hexanoate), terpenes (linalool and nerolidol) and sulfur compounds (methanethiol) are present at low levels (Yan et al., 2018). In white strawberry (Fragaria chiloensis), the major aroma compounds are ethyl butanoate, 2-hexenal, ethyl hexanoate, hexyl acetate, 2-hexen-1-ol acetate, furfuryl acetate, linalool, mesifuran, ethyl decanoate, benzyl alcohol, 2-phenylethyl acetate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, hydrocinnamyl alcohol, γ-decalactone, cinnamyl acetate, (E)-2,6-dimethylocta-2,7-dien-1,6-diol, (Z)-2,6-dimethylocta-2,7-dien-1,6-diol, and hexadecanoic acid (Prat et al., 2013).

草莓的挥发性有机化合物中存在高浓度的几种化合物(如酮类和长链酸),而呋喃酮(特别是4-甲氧基-2,5-二甲基-3(2H)-呋喃酮)、酯类(丁酸乙酯、己酸乙酯、丁酸甲酯和己酸甲酯)、萜烯类(芳樟醇和橙花叔醇)和硫化合物(甲硫醇)等几种特征挥发性有机化合物的含量较低(Yan et al., 2018)。在白草莓(Fragaria chiloensis)中,主要的香气化合物是丁酸乙酯、2-己烯醛、己酸乙酯、乙酸己酯、乙酸2-己烯-1-酯、乙酸糠酯、芳樟醇、4-甲氧基-2,5-二甲基-3(2h)-呋喃酮、癸酸乙酯、苯甲醇、乙酸2-苯乙酯、2,5-二甲基-4-羟基-3(2H)-呋喃酮、氢化肉桂醇、γ-癸内酯、乙酸肉桂酯、(E)-2,6-二甲基-2,7-二烯-1,6-辛二醇、(Z)-2,6-二甲基-2,7-二烯-1,6-辛二醇和十六酸(Prat等,2013)。


Citrus (Citrus spp.) 橙

Citrus fruits (e.g., orange and lemon) have high nutritional and economical value because of their contents of vitamin C, flavonoids, pectin, carotenoids, and calcium (Abobatta, 2019). Global production reached 98 million tons in 2021, according to the United States Department of Agriculture. The aromatic compounds in citrus fruits are present in peels and juices; their essential oils are used in the food, cosmetics, and pharmaceutical industries. Terpenes and terpenols are the major volatiles in orange juice. In orange beverage, limonene is the main volatile compound, followed by myrcene, ethyl butyrate, γ-terpinene, linalool, 3-carene, decanal, ethyl acetate and low levels of 1-octanol, geranial, β-pinene, octanal, α-pinene, and neral (Mirhosseini et al., 2007). Similarly, the main aromatic compounds in orange essence oil (from juice) are limonene followed by linalool, octanal, decanal, myrcene, and ethyl butyrate (Högnadóttir and Rouseff, 2003). In sweet orange (Citrus sinensis) juice, ethyl butanoate, nootkatone, linalool, and limonene are predominant (Kelebek and Selli, 2011; Herrera et al., 2016); the aroma profile of Jinchen sweet orange juice and peel oil comprises the same VOCs (Qiao et al., 2008).

柑橘类水果(如橙子和柠檬)富含维生素C、类黄酮、果胶、类胡萝卜素和钙,因此具有很高的营养和经济价值(Abobatta, 2019)。根据美国农业部的数据,2021年全球产量达到9800万吨。柑橘类水果中的芳香化合物存在于果皮和果汁中;它们的精油用于食品、化妆品和制药工业。萜烯和萜烯醇是橙汁中的主要挥发物。在橙饮料中,柠檬烯是主要的挥发性化合物,其次是月桂烯、丁酸乙酯、γ-松油烯、芳樟醇、3-蒈烯、癸醛、乙酸乙酯和少量的1-辛醇、香叶醛、β-蒎烯、辛醛、α-蒎烯和橙花醇 (Mirhosseini et al., 2007)。同样,橙子精油(来自果汁)中的主要芳香化合物是柠檬烯,其次是芳樟醇、辛醛、癸醛、月桂烯和丁酸乙酯(Högnadóttir and Rouseff, 2003)。在甜橙汁中,丁酸乙酯、诺卡酮、芳樟醇和柠檬烯占主导地位(Kelebek和Selli, 2011;Herrera et al., 2016);金辰甜橙汁和果皮油的香气特征中挥发性有机化合物含量相同(Qiao et al., 2008)。

The volatile oil of Citrus limon peels consists mainly of monoterpenes; limonene is the most abundant component (Ayedoun et al., 1996; Mahalwal and Ali, 2003), followed by camphenes, α-terpineol, α-phellandrene, and 4-terpineol, along with α-selinene (a predominant sesquiterpene), caryophyllene oxide, t-nerolidol, and valencene (Mahalwal and Ali, 2003). In eureka lemon, terpenoids are the main aromatic components; d-limonene is the major component in lemon juice and peel, followed by aldehydes and esters (Zhong et al., 2014).

柠檬皮挥发油主要成分为单萜;柠檬烯是最丰富的成分(Ayedoun et al., 1996;Mahalwal和Ali, 2003年),其次是莰烯、α-松油醇、α-水芹烯和4-松油醇,以及α-芹子烯(主要的倍半萜)、氧化石竹烯、反式-橙花叔醇和瓦伦烯(Mahalwal和Ali, 2003年)。在尤里卡柠檬中,萜类化合物是主要的芳香成分;D-柠檬烯是柠檬汁和柠檬皮的主要成分,其次是醛和酯(Zhong et al., 2014)。


Mango (Mangifera indica) 芒果

Mango is a tropical fruit and a good source of vitamins, minerals, and fiber. According to the latest report of global fruit production in 20191, mango ranked sixth among the major fruits. The predominant aroma compounds in mango are (E)-β-damascenone, (E,Z)-nonadienal, (E)-2-nonenal, (E)-β-ionone, terpinolene, ethyl 2-methylpropanoate, ethyl butanoate, ethyl 2-methylbutanoate, limonene, myrcene, linalool, δ-3-carene, β-caryophyllene, γ-octalactone, nonanal, methyl benzoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone, and hexanal (Pino, 2012). In addition to ethyl-2-methylpropanoate, ethyl butanoate, and methyl benzoate, the most abundant aromatic compounds in 20 mango cultivars are (E)-2-nonenal, (E,Z)-2,6-nonadienal, decanal, (E)-β-ionone, and 2,5-dimethyl-4-methoxy-3(2H)-furanone (Pino and Mesa, 2006). Some cultivars have typical aromas; examples include Colombian mangoes (α-pinene, α-phellandrene and terpinolene) (Quijano et al., 2007) and Harumanis mango (β-ocimene, transβ-ocimene, and allo-ocimene) (Zakaria et al., 2018). Mango skin produces glycosidically bound aromatic volatile compounds, the levels of which are strongly influenced by fruit part and maturity (Lalel et al., 2003a).

芒果是一种热带水果,富含维生素、矿物质和纤维。根据2019年全球水果产量最新报告,芒果在主要水果中排名第六。芒果的主要香气化合物是(E)-β-大马酮、(E,Z)-壬二烯醛、(E)-2-壬烯醛、(E)-β-紫罗兰酮、异松油烯、2-甲基丙酸乙酯、丁酸乙酯、2-甲基丁酸乙酯、柠檬烯、月桂烯、芳樟醇、δ-3-蒈烯、β-石竹烯、γ-辛内酯、壬醛、苯甲酯、2,5-二甲基-4-甲氧基-3(2H)-呋喃酮和己醛(Pino, 2012)。除了2-甲基丙酸乙酯、丁酸乙酯和苯甲酸甲酯外,20个芒果品种中最丰富的芳香族化合物是(E)-2-壬烯醛、(E,Z)-2,6-壬二烯醛、癸醛、(E)-β-紫罗兰酮和2,5-二甲基-4-甲氧基-3(2H)-呋喃酮(Pino和Mesa, 2006)。有些品种有典型的香气;例如,哥伦比亚芒果(α-蒎烯、α-水芹烯和异松油烯)(Quijano等人,2007年)和玻璃市芒果(β-罗勒烯、反式-β-罗勒烯和异位罗勒烯)(Zakaria等人,2018年)。芒果皮产生糖苷结合的芳香挥发性化合物,其水平受果实部位和成熟度的强烈影响(Lalel et al., 2003a)。

Peach (Prunus persica) 桃

Peach is an important stone fruit; it contains vitamins, minerals, and sugars. The volatile levels in white-fleshed peach skin are significantly higher than in other parts of the fruit. Unsaturated lactones and C6-compounds are detected mainly in the top and bottom mesocarp; benzaldehyde content is highest close to the stone (Aubert and Milhet, 2007). The essential oils of six peaches comprise aldehydes, lactones, alcohols, terpenes, esters, acids, norisoprenoids, phenylalanine derivates, and ketones (Eduardo et al., 2010). The characteristic volatiles and their contents in peach cultivars depend on the genotypic background and germplasm origin. For example, the highest contents of terpenoids and esters are present in Chinese wild peaches and “Wutao,” lactones are present in “Ruipan 14” and “Babygold 7,” and linalool is present in seven cultivars of American or European origin (Wang et al., 2009).

桃子是一种重要的核果;它含有维生素、矿物质和糖。白桃果皮中的挥发性物质含量明显高于果实的其他部位不饱和内酯和c6化合物主要分布在中果皮的上部和下部;靠近硬核的地方苯甲醛含量最高(Aubert and Milhet, 2007)。六种桃子的精油包括醛类、内酯类、醇类、萜烯类、酯类、酸类、去异戊二烯类、苯丙氨酸衍生物和酮类(Eduardo等,2010)。桃树品种挥发物的特征及其含量与基因型背景和种质来源有关。例如,萜类和酯类含量最高的是中国野桃和“五桃”,内酯类含量最高的是“瑞盘14号”和“宝贝金7号”,芳樟醇含量最高的是7个美国或欧洲品种(Wang et al., 2009)。

Apricot (Prunus armeniuca) 杏

The major volatiles in apricot are aldehydes, alcohols, esters, acetates, terpenes, and acids. The most abundant compounds are ethanol, hexanal, hexyl acetate, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, (Z)-3-hexenol, 1-hexanol, and (E)-2-hexen-1-ol (Gokbulut and Karabulut, 2012). The major compounds in other apricot species are heptyl isobutyrate, citronellyl propionate, geranyl acetate, γ-hexalactone, δ-undecalactone, 5-hydroxy-7-decenoic acid lactone, and 5-hydroxy-2,4-decadienoic acid lactone (Zhang et al., 2008). In some apricot cultivars, ethyl acetate, hexyl acetate, limonene, β-cyclocitral, γ-decalactone, 6-methyl-5-hepten-2-one, linalool, β-ionone, menthone, and (E)-hexen-2-al are the most important aromatics (Guillot et al., 2006). In the apricot cultivar “Xinshiji,” the predominant compounds are hexyl acetate, β-ionone, butyl acetate, linalool, limonene, γ-decalactone, (E)-2-hexenal, and hexanal (Meixia et al., 2004; Chen et al., 2006). Aldehydes and terpenes decrease significantly, whereas lactones and apocarotenoids increase significantly, with apricot ripening. β-ionone, γ-decalactone, sucrose, and citrate are key flavor characteristics influencing consumer acceptance (Xi et al., 2016). In ripe “Xinshiji” and “Hongfeng” apricots, shared constituents include ionone, hexanal, hexenal, hexanol, hexenol, lactones, and terpenic alcohols (Meixia et al., 2004). In Japanese apricot (Prunus mume Sieb. et Zucc.), benzaldehyde, isolongifololyl acetate, linalool, butyl acetate, and palmitic acid are the dominant compounds (Miyazawa et al., 2009).

杏的主要挥发物是醛类、醇类、酯类、乙酸类、萜烯类和酸类。最丰富的化合物是乙醇、己醛、乙酸己酯、(Z)-3-乙酸己烯酯、(E)-2-乙酸己烯酯、(Z)-3-己醇、1-己醇和(E)-2-己烯-1-醇(Gokbulut和Karabulut, 2012)。其他杏种的主要化合物有异丁酸庚酯、丙酸香茅酯、乙酸香叶酯、γ-己内酯、δ-十一内酯、5-羟基-7-癸烯酸内酯和5-羟基-2,4-癸二烯酸内酯(Zhang et al., 2008)。在一些杏品种中,乙酸乙酯、乙酸己酯、柠檬烯、β-环柠檬醛、γ-癸内酯、6-甲基-5-庚烯-2-酮、芳樟醇、β-紫罗兰酮、薄荷酮和(E)-己烯-2-醛是最重要的芳香化合物(Guillot et al, 2006)。在杏品种“新世纪”中,主要化合物是乙酸己酯、β-紫罗兰酮、乙酸丁酯、芳樟醇、柠檬烯、γ-癸内酯、(E)-2-己烯醛和己醛(Meixia et al., 2004;Chen et al., 2006)。随着杏的成熟,醛类和萜类物质显著减少,而内酯类和类胡萝卜素显著增加。成熟的“新世纪”杏和“红枫”杏共有的成分包括紫罗兰酮、己醛、己烯醛、己醇、己烯醇、内酯和萜烯醇(梅霞等,2004)。在日本杏(Prunus mume Sieb. et Zucc.)中,苯甲醛、乙酸异长叶叶酯、芳樟醇、乙酸丁酯和棕榈酸是主要化合物(Miyazawa等,2009)。

Pineapple (Ananas comosus) 菠萝

Pineapple is an important tropical fruit in which the most common VOCs are ethyl 2-methylbutyrate, methyl-2-methylbutyrate, ethyl 2-methylbutanoate, methyl 2-methylbutanoate, methyl hexanoate, ethyl hexanoate, decanal, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Montero-Calderón et al., 2010; Wei et al., 2011; Zheng et al., 2012; Žemlička et al., 2013). Other VOCs include furaneol, 3-(methylthio) propanoic acid ethyl ester, 3-(methylthio) propanoic acid methyl ester, δ-octalactone (Zheng et al., 2012), and methyl butanoate (Montero-Calderón et al., 2010). The dominant compounds in pineapple at all growth stages are esters, terpenes, alcohols, 2-ketones, aldehydes, free fatty acids, and γ- and δ-lactones (Steingass et al., 2015).

菠萝是一种重要的热带水果,其中最常见的挥发性有机化合物是2-甲基丁酸乙酯、2-甲基丁酸甲酯、2-甲基丁酸乙酯、2-甲基丁酸甲酯、己酸甲酯、己酸乙酯、癸醛和2,5-二甲基-4-羟基-3(2H)-呋喃酮(Montero-Calderón et al., 2010;Wei et al., 2011;郑等,2012;Žemlička et al., 2013)。其他挥发性有机化合物包括呋喃酮、3-(甲基硫)丙酸乙酯、3-(甲基硫)丙酸甲酯、δ-辛内酯(Zheng等,2012)和丁酸甲酯(Montero-Calderón等,2010)。菠萝在所有生长阶段的主要化合物是酯类、萜烯类、醇类、2-酮类、醛类、游离脂肪酸以及γ-和δ-内酯(Steingass et al., 2015)。

Pineapple juice comprises mainly esters, decanal, acetic acid, ethyl octanoate, 1-hexanol, γ-octalactone, δ-octalactone, γ-hexalactone, γ-decalactone, and γ-dodecalactone (de Barretto et al., 2013). The major esters are methyl 2-methylbutanoate, methyl 3-(methylthio)-propanoate, methyl butanoate, methyl hexanoate, ethyl hexanoate, ethyl 3-(methylthio)-propanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone (mesifurane), and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (furaneol) (Elss et al., 2005). In pineapple wine, the main components are ethyl octanoate, ethyl acetate, ethyl decanoate, and 3-methyl-1-butanol (Pino and Queris, 2010).

菠萝汁主要含有酯类、癸醛、乙酸、辛酸乙酯、1-己醇、γ-辛内酯、δ-辛内酯、γ-己内酯、γ-癸内酯和γ-十二内酯(de Barretto et al., 2013)。主要酯类是2-甲基丁酸甲酯、3-(甲硫)-丙酸甲酯、丁酸甲酯、己酸甲酯、己酸乙酯、3-(甲硫)-丙酸乙酯、2,5-二甲基-4-甲氧基-3(2H)-呋喃酮和2,5-二甲基-4-羟基-3(2H)-呋喃酮(呋喃酮)(Elss等,2005年)。菠萝酒的主要成分是辛酸乙酯、乙酸乙酯、癸酸乙酯和3-甲基-1-丁醇(Pino和Queris, 2010)。


Durian (Durio zibethinus) 榴莲

Durian is a tropical fruit popular in southeast Asia (Chin et al., 2008); it is well-known for its strong aroma and unique taste. Durian produces various VOCs, including esters (ethyl ester and propanoic acid), aldehydes (acetaldehyde), and sulfur compounds (di-ethyl disulfide, di-ethyl trisulfide, and ethyl-propyl disulfide) (Ali et al., 2020).

榴莲是东南亚流行的热带水果(Chin et al., 2008);它以浓郁的香气和独特的口感而闻名。榴莲产生各种挥发性有机化合物,包括酯类(乙基酯和丙酸)、醛类(乙醛)和含硫化合物(二乙基二硫化物、二乙基三硫化物和乙基丙基二硫化物)(Ali etal ., 2020)。

The VOCs of most major fruits have been identified. The chemical compositions of fruit aromas are listed in Supplementary Table 2.

大多数主要水果的挥发性有机化合物已经被确定。水果香气的化学成分列在补充表2中。



中外香料香精第一资讯
国内外香料香精化妆品领域的最新进展,商业情报,会展信息,以资讯的前沿性,及时性和教育性,体现其功能和价值。
 最新文章