医线心声丨下篇:促进心肌逆向重塑的措施和方法
健康
健康
2024-11-01 18:54
北京
心脏逆向重塑(RR)被定义为心脏几何形状和功能的任何规范性改善,由治疗干预驱动,很少自发发生。虽然RR是大多数心血管疾病治疗的理想结果,但它们通常只会减缓/阻止其进展或改变风险因素,因此需要新的、更及时的RR方法。触发RR的干预措施取决于心肌损伤,包括药物(肾素-血管紧张素-醛固酮系统抑制剂、β受体阻滞剂、利尿剂和钠-葡萄糖协同转运蛋白2抑制剂)、装置(心脏再同步治疗、心室辅助装置)、手术(瓣膜置换术、冠状动脉旁路移植术)或生理学反应(解除条件、产后)。随后,根据左心室质量(LVM)、射血分数(EF)和舒张末期/收缩末期容积的正常化程度推断心脏RR,其程度通常与患者的预后相关。然而,旨在实现持续心脏改善的策略、评估RR程度的预测模型,甚至允许客观区分完全RR和不完全RR或不良重塑(AR)的临床终点仍然有限且有争议。
RR可由各种医疗器械的使用引起,其有效性在很大程度上取决于手术前的疾病进展阶段。本文回顾两种主要的治疗方式:心脏再同步治疗(CRT)和左心室辅助装置(LVAD)。这些方式用于不同的病理背景,服务于不同的目的和作用机制,它们可导致类似的RR模式。CRT通常用于实现轻度心力衰竭(HF)患者的RR,通常是那些EF降低、心电图不同步(如左束支传导阻滞[LBBB])的HF患者。相比之下,LVAD用于终末期HF,通常用于心室严重扩张和功能障碍的患者,作为目标治疗、移植过渡或决策/候选过渡。因此,在这种情况下完全康复是罕见的[249],心脏移植是首选[226]。在CRT诱导的RR中,心肌RR通常通过左心室容积的减少来评估。最大RR通常发生在前6个月内,一般会受到术前心肌状况的影响。例如,以左心室和/或左心房扩张为特征的晚期心肌AR降低了对CRT的“超反应”的可能性,这是由于NYHA分级降低和收缩功能保留的结合而导致的[250-251]。此外,HF病史较长可能会阻碍CRT后RR的达成。相反,如果心肌底物对电刺激有反应,并且整体收缩储备得到保留,则预期对CRT有反应,表现为左室射血分数(LVEF)改善和/或左心室收缩末期容积(LVESV)降低[252]。基线左心室舒张末期直径(LVEDD)≤71 mm和QRS≥170 ms可以预测CRT反应[253]。在一项较大的研究中,女性、非缺血性病因、较高的基线LVEF和较长的QRS都被确定为CRT超反应(随访时LVEF>50%)的独立预测因素[254]。相反,先前的室性快速性心律失常发作、HF住院和非LBBB固有QRS模式被认为是不完全RR的预测因素[255]。与LVAD诱导的RR不同,年龄似乎不是CRT诱导RR的决定因素[256-257]。推广RR模型和预测装置植入后结果的局限性在于RR的程度(CRT的分数)。应答者和非应答者取决于RR评估的时间点。值得注意的是,超级反应患者的主要不良心脏事件(MACE)发生率较低,包括植入心脏复律除颤器、HF住院或心源性死亡[254]。其中,15%被归类为“短暂反应者”,在6个月时LVESV暂时降低(≥15%),但在1~2年的随访中没有。此外,根据PREDICT-CRT试验的回顾性分析,CRT后LVESV的降低与心血管或全因死亡风险的降低相关[102],更大的降低对应于更低的死亡率[103]。整体纵向应变(GLS)的改善是CRT后RR的另一个特征,与收缩储备募集有关,与生存率的提高有关,特别是当与LVESV降低≥15%相结合时[104]。最后,纠正CRT后1年的机械不同步也与提高生存率有关[103]。预测患者对CRT的反应可以加强HF管理。此外,CRT中的创新模式可能会改善结果,例如多点左心室起搏,与双心室CRT相比,这对心容量恢复和LVEF增加的影响更大[258-259]。此外,His优化的CRT和其他传导系统起搏方法可能会导致LBBB显著变窄并经常正常化,改善LVEF和NYHA分级,并在装置植入后长达12个月内显著减少左室容积[260-262]。左心室辅助装置诱导的RR只有少数晚期心力衰竭患者在LVAD植入后实现了持续的心脏改善,导致成功的移植,而大多数患者表现出不完全的RR,并依赖于持续的LVAD支持或心脏移植[253]。目前,尽管LVEF与LVAD 密切相关,但完全(恢复)和不完全RR之间的临床区别主要基于LVEF的变化。尽管如此,有研究已经报道了各种细胞和结构变化[155,263]。虽然在LVAD诱导的RR期间发现钙处理有所改善,但心肌细胞肥大和细胞外基质(ECM)周转的消退并没有一致的报道[264]。胶原周转和ECM体积在LVAD支持下表现出缓慢的双相模式[265]。例如,Klotz等[266]观察到,即使在LVAD植入后4~6个月,I型和III型胶原以及I/III比值也会增加,有利于心肌硬化。此外,MMP-1/TIMP-1和MMP-1和MMP-9水平的降低,加上血管紧张素I和II的增加,表明LVAD治疗后ECM得以保留。与其他干预措施相比,LVAD后RR对患者预后的影响研究较少。LVAD支持的持续时间或类型、年龄和HF病因(缺血性或特发性心肌病)等因素都会影响RR过程[150]。机械支持持续时间较短且RR最大的患者HF复发概率较低,而长期机械支持可能导致心功能恶化[267-269]。HF病史的持续时间及其病因被确定为心肌恢复的主要预测因素[155]。INTERMACS心脏恢复评分(I-CARS)来自一项纳入了14 000多名患者的研究,可以根据六个独立变量预测心肌恢复(LVAD移植):年龄<50岁、非缺血性病因、最近诊断(<2年)、没有植入式心脏复律除颤器、肌酐≤1.2 mg/dl和LVEDD<6.5 cm,预测表现优异(AUC=0.94)[269]。基于分子标记的模型,如双细胞因子模型(干扰素-γ和肿瘤坏死因子-α),也被提出用于准确预测LVAD“反应者”[270]。预测LVAD反应可能有助于预测不良事件和辅助治疗的需求。植入后2年内LVEF改善≥40%的患者复合终点的发生率较低,包括HF驱动的住院和死亡[99]。在心肺运动测试中,峰值耗氧量为12~14 mL/min/kg 且分钟通气/二氧化碳产生斜率<35的LVAD患者的生存率也更高[100]。此外,LVAD后1个月,不完全左心卸载和右心室功能障碍与较差的中期结局(NYHA分级≥III,HF住院,死亡)有关[101]。指南推荐的药物 几种指南推荐的药品可以在各种病理生理条件下诱导RR。包括β受体阻滞剂、肾素-血管紧张素抑制、利尿剂和SGLT2抑制剂。针对RR的新疗法的临床前/早期临床证据 最近的进展集中在解决AR的特征和可能在临床前动物模型中诱导RR,这包括基于RNA、抗炎症、肌纤维或线粒体的靶向药物。运动对心血管系统的影响取决于各种因素,包括频率、强度、持续时间、方式和调节量[311]。长时间、有规律和高强度的运动会引起生理性心肌肥大,增强心肌收缩力和每搏输出量。由于运动时间和静脉回流的增加,运动员通常会出现心率下降和舒张功能改善的情况[312]。耐力和阻力训练与偏心重塑和向心性肥大有关[312-313]。性别因素影响了这种重塑,女运动员表现出更大的左心室腔扩大,而男运动员则表现出更高的左心室壁厚度和质量[314]。运动诱导的肥大特征是心肌细胞生长、纤维化和凋亡减少、钙处理改善、心脏干细胞活化、一氧化氮产生增加、血管生成、内皮功能改善和抗氧化保护,保护心脏结构和功能[311-312,315]。胰岛素样生长因子-1-PI3K(p110α)-Akt通路在心脏重塑过程中起着关键作用[311,315]。运动训练还可以增加线粒体与肌纤维体积比,促进更节能的Frank-Starling机制[312]。Maron等[316]发现奥运会运动员在去调节期后可观察到左心室壁厚度和质量下降。此外,在马拉松完成后4周,LVM和壁厚恢复,体积卸载后腔室体积和功能不变[317]。然而,在马拉松比赛后8周,这种RR并不明显[317]。急性血容量减少和Frank-Starling适应之间的延迟可能是由于去调节后体重增加造成的[317]。运动员在大约5年的去调节期后,左心室腔尺寸减小,时间性增加[118]。先前运动练习的持续时间和水平也会调节长期RR,特别是在运动员超过生理性心肌肥大的心室形态上限的情况下[312]。例如,尽管室间隔厚度相似,但在38年的去适应期后,前职业自行车手的LVEDV和LVM指数略高于高尔夫球手[319]。肥胖和糖尿病主要导致血管并发症,促进心肌缺血和糖尿病心肌病[320]。这种类型的心肌病在女性中更为常见,其特征是明显的结构和功能损伤[321-322]。糖尿病患者表现出两种心脏表型:向心性左心室重塑伴舒张功能障碍导致HF,EF保持不变;偏心性左心室扩张伴收缩功能障碍导致HFrEF[323]。这两种表型都涉及间质和血管周围纤维化、心肌细胞肥大和细胞损失。心脏代谢失调,包括代谢不灵活、脂肪毒性、糖毒性、线粒体呼吸受损和胰岛素抵抗,在糖尿病心肌病的发展中起着至关重要的作用[324-325]。减肥手术后快速减肥与HF和非HF患者心血管死亡率的降低有关[326-327]。体重减轻导致左心室肥大的线性恢复,与年龄、性别和心脏代谢危险因素无关[328]。LVM的减少伴随着左心室几何形状和舒张功能的改善[329],主要是由壁厚的减少而不是舒张末期容积的变化引起的[330]。然而,最近的研究表明,减肥手术后RR不完全,尽管左心室GLS增加,但LVEF略有下降,舒张功能恶化[330]。除了减肥手术外,热量限制和SGLT2抑制剂等药物疗法在促进糖尿病HF的RR方面显示出了希望,无论糖尿病状况如何[4,331]。另一个新出现的靶点是胰高血糖素样肽-1受体激动剂(GLP-1RA),其已被证明对心血管结局有益处,可能是通过改善脂质水平、血压和炎症生物标志物发挥作用[332-333]。GLP-1RA的作用可以通过靶向炎症和ECM来预防心肌梗死(MI)后的不良重塑,而与血糖控制无关[334]。正在进行的SURPAS-CVOT试验旨在进一步评估GLP-1RA对心血管结局的影响[335]。热量限制及其药理学模拟物可有效减轻代谢综合征动物模型的心脏重塑和舒张功能障碍,同时减少纤维化和氧化应激[166,336-337]。MI后开始热量限制可改善非糖尿病动物的心脏功能障碍和变力储备[338]。总体而言,这些临床、行为和药理学干预措施旨在缓解心脏过度供血,这可能导致胰岛素抵抗、代谢不灵活以及线粒体和收缩功能障碍,最终促进RR[339]。酒精性心肌病,被世界卫生组织认定为一种独特的临床实体,是由长期大量饮酒引起的,表现为扩张型心肌病[340-341]。其特征是在没有冠状动脉疾病和营养不良的情况下LVM增加、心室扩张和室壁变薄,类似于左心室偏心重构伴心室功能障碍[341-343],其临床和组织学特征与特发性扩张型心肌病相似[341,344]。酒精性心肌病的治疗与其他非缺血性DCM的治疗类似,重点是完全或显著减少饮酒,以防止心脏功能和心力衰竭的进一步恶化[344-345]。值得注意的是,戒酒或显著减少酒精摄入可能会导致6个月内的心脏RR[346],从而改善左心室功能、HF症状和短期与长期预后[344-346]。由于在RR期间难以观测人类心肌组织的变化,动物模型对于理解其机制和预测因素至关重要。动物模型应模拟应激源诱导的心脏重塑和干预后的RR过程[347-348]。理论上,每只接受治疗的心脏损伤动物都是研究RR的合适模型。然而,在研究心肌肥大、纤维化、血管生成和氧化应激恢复时,通常使用手术模型,如主动脉结扎后去捆绑和左前降支(LAD)冠状动脉结扎后再灌注的小动物[349-350]和大动物[351-352]。主动脉束带模拟慢性压力过载,并阻碍随后情况的缓解,模仿了手术/治疗干预前后AS和高血压等疾病。异位心脏移植也可以在主动脉束带和其他动物模型中复制。LAD结扎及其切除模拟了心肌再灌注后的缺血事件[347]。这两个模型都代表了具有高翻译潜力的人类RR过程。结合这些模型可以复制临床相关的合并症,如缺血性心脏病和动脉压超负荷[353]。为了通过心动过速诱发心肌病,可以使用持续快速的心房或心室起搏。这会导致严重的双心室舒张和收缩功能障碍,伴有严重的心腔扩张和随后的球形重塑。然后可以通过停止持续快速起搏来诱导RR[354],模仿控制时间性的效果。在动物模型中,纵向样本采集允许识别心脏病逆转的生物标志物,并利用遗传功能获得/丧失模型。复制影响RR的合并症具有挑战性,但可以纳入现有模型。衰老与细胞衰老有关,释放与衰老相关的分泌表型,导致包括HF在内的与年龄相关的心脏病[69,355]。衰老的心肌细胞促进心脏成纤维细胞活化,导致病理性心脏重塑[356-358]。在老年动物的实验中,β肾上腺素诱导的心肌病停止后,衰老会损害RR。老年雌性动物在异丙肾上腺素停药后表现出持续的心肌肥大、纤维化和功能障碍,而年轻雌性动物则从心脏重塑中恢复过来[357]。需要对老年动物进行进一步的机制研究,以了解衰老对RR的影响。考虑到其在维持微血管功能障碍和促炎信号传导中的作用,研究还应解决RR中的内皮-间充质转化问题[359-361]。此外,还需要进一步的研究来探索新的治疗方案。在心血管研究中,像小鼠这样的简单模型对临床翻译实验数据构成了重大障碍,特别是对于涉及许多遗传和环境因素的RR。大型动物模型(如猪、狗)更准确地模拟了人类的病理生理学,包括缺血后再灌注和主动脉条带的缓解[350-351],增强了治疗干预和预后策略的转化潜力。在全球范围内,心血管疾病仍然是发病率和死亡率的主要原因,导致压力超负荷、缺血或遗传变异等各种损伤引起的不同心脏重塑模式。干预措施旨在诱导心脏RR,并受到初始心脏应激和危险因素的影响。新兴的抗糖尿病药物、新型肌力药和代谢干预措施显示出改善心血管结局的希望。RR程度模型、机器学习方法增强了RR预测,并可能很快超越既定的指导方针。虽然LVM、LVEF、体积、QRS持续时间和心肌瘢痕等传统因素一直可以预测RR,但个性化的多尺度信息,包括遗传学、代谢、炎症和人工智能,为预测个体治疗反应和评估RR潜力提供了关键途径[362-363]。动物模型在理解RR的复杂机制和评估新靶点的临床潜力方面发挥着至关重要的作用。这些模型为操纵变量提供了一个受控的环境,允许详细探索RR中涉及的分子途径和生理反应。利用这些优势有助于验证新的靶点,并深入了解心脏RR新兴疗法的转化潜力,弥合临床前和临床应用之间的差距。这些进展有望改善RR预测,并确定患者药物和非药物干预的最佳时机。
中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长,中国医疗保健国际交流促进会高血压分会委员
天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委,天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员,天津市心脏学会理事,天津市心律学会第一届委员会委员,天津市房颤中心联盟常委,天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委,天津市中西医结合学会心血管疾病专业委员会常委
《中华临床医师杂志(电子版)》特邀审稿专家,《中华诊断学电子杂志》《心血管外科杂志(电子版)》审稿专家,《华夏医学》副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《中华老年心脑血管病杂志》《世界临床药物》《医学综述》《中国医药导报》《中国现代医生》编委
本人在专业期刊和心血管网发表文章979篇,其中第一作者790篇,参加著书11部。获天津市2005年度“五一劳动奖章和奖状”和“天津市卫生行业第二届人民满意的好医生”称号
249. Tseng CC, Ramjankhan FZ, de Jonge N, Chamuleau SA. Advanced strategies for end-stage heart failure: Combining regenerative approaches with LVAD, a new horizon? Front Surg 2015;2:10.
250. Guo Z, Liu X, Liu C, Yang J, Cheng X, Chen Y, et al. Heart failure duration combined with left atrial dimension predicts super-response and long-term prognosis in patients with cardiac resynchronization therapy implantation. Biomed Res Int 2019;2019:2983752. https://doi.org/10.1155/2019/2983752
251. Jin H, Gu M, Hua W, Fan XH, Niu HX, Ding LG, et al. Predictors of super-response to cardiac resynchronization therapy: The significance of heart failure medication, pre-implant left ventricular geometry and high percentage of biventricular pacing. J Geriatr Cardiol 2017;14:737–742.
252. Kloosterman M, Damman K, Van Veldhuisen DJ, Rienstra M, Maass AH. The importance of myocardial contractile reserve in predicting response to cardiac resynchronization therapy. Eur J Heart Fail 2017;19:862–869. https://doi.org/10 .1002/ejhf.768
253. Guo Z, Liu X, Cheng X, Liu C, Li P, He Y, et al. Combination of left ventricular end-diastolic diameter and QRS duration strongly predicts good response to and prognosis of cardiac resynchronization therapy. Cardiol Res Pract 2020;2020:1257578. https://doi.org/10.1155/2020/1257578
254. Ghani A, Delnoy P, Adiyaman A, Ottervanger JP, Ramdat Misier AR, Smit JJJ, et al. Predictors and long-term outcome of super-responders to cardiac resynchronization therapy. Clin Cardiol 2017;40:292–299. https://doi.org/10 .1002/clc.22658
255. Oka T, Inoue K, Tanaka K, Toyoshima Y, Isshiki T, Kimura T, et al. Duration of reverse remodeling response to cardiac resynchronization therapy: Rates, predictors, and clinical outcomes. Int J Cardiol 2017;243:340–346. https://doi .org/10.1016/j.ijcard.2017.05.058
256. Yokoyama H, Shishido K, Tobita K, Moriyama N, Murakami M, Saito S. Impact of age on mid-term clinical outcomes and left ventricular reverse remodeling after cardiac resynchronization therapy. J Cardiol 2021;77:254–262. https://doi .org/10.1016/j.jjcc.2020.09.004
257. Martens P, Dupont M, Dauw J, Nijst P, Herbots L, Dendale P, et al. The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial. Eur Heart J 2021;42:4905–4914.
258. Schiedat F, Schöne D, Aweimer A, Bösche L, Ewers A, Gotzmann M, et al. Multipoint left ventricular pacing with large anatomical separation improves reverse remodeling and response to cardiac resynchronization therapy in responders and non-responders to conventional biventricular pacing. Clin Res Cardiol 2020;109:183–193.
259. Pappone C, Calovi ´ c Ž, Vicedomini G, Cuko A, McSpadden LC, Ryu K, ´ et al. Improving cardiac resynchronization therapy response with multipoint left ventricular pacing: Twelve-month follow-up study. Heart Rhythm 2015;12:1250–1258.
260. Vijayaraman P, Herweg B, Ellenbogen KA, Gajek J. His-optimized cardiac resynchronization therapy to maximize electrical resynchronization: A feasibility study. Circ Arrhythm Electrophysiol 2019;12:e006934.
261. Liang Y, Wang J, Gong X, Lu H, Yu Z, Zhang L, et al. Left bundle branch pacing versus biventricular pacing for acute cardiac resynchronization in patients with heart failure. Circ Arrhythm Electrophysiol 2022;15:e011181.
262. Zweerink A, Zubarev S, Bakelants E, Potyagaylo D, Stettler C, Chmelevsky M, et al. His-optimized cardiac resynchronization therapy with ventricular fusion pacing for electrical resynchronization in heart failure. JACC Clin Electrophysiol 2021;7:881–892.
263. Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant 2010;29:672–679.
264. Birks EJ. Molecular changes after left ventricular assist device support for heart failure. Circ Res 2013;113:777–791.
265. Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, et al. Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transplant 2006;25:1091–1098.
266. Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 2005;112:364–374.
267. Pan S, Aksut B, Wever-Pinzon OE, Rao SD, Levin AP, Garan AR, et al. Incidence and predictors of myocardial recovery on long-term left ventricular assist device support: Results from the United Network for Organ Sharing database. J Heart Lung Transplant 2015;34:1624–1629.
268. Topkara VK, Garan AR, Fine B, Godier-Furnemont AF, Breskin A, Cagliostro B, et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: Results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Circ Heart Fail 2016;9:e003157. https://doi .org/10.1161/CIRCHEARTFAILURE.116.003157 269. Wever-Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG, et al. Cardiac recovery during long-term left ventricular assist device support. J Am Coll Cardiol 2016;68:1540–1553.
270. Diakos NA, Taleb I, Kyriakopoulos CP, Shah KS, Javan H, Richins TJ, et al. Circulating and myocardial cytokines predict cardiac structural and functional improvement in patients with heart failure undergoing mechanical circulatory
support. J Am Heart Assoc 2021;10:e020238.
271. Fournier A, Gregoire I, el Esper N, Lalau JD, Westeel PF, Makdassi R, et al. Atrial natriuretic factor in pregnancy and pregnancy-induced hypertension. Can J Physiol Pharmacol 1991;69:1601–1608.
272. Elvan-Taspinar A, Franx A, Bots ML, Koomans HA, Bruinse HW. Arterial stiffness and fetal growth in normotensive pregnancy. Am J Hypertens 2005;18:337–341.
273. Abbas AE, Lester SJ, Connolly H. Pregnancy and the cardiovascular system. Int J Cardiol 2005;98:179–189.
274. Bello NA, Bairey Merz CN, Brown H, Davis MB, Dickert NW, El Hajj SC, et al. Diagnostic cardiovascular imaging and therapeutic strategies in pregnancy: JACC focus seminar 4/5. J Am Coll Cardiol 2021;77:1813–1822.
275. Meah VL, Cockcroft JR, Backx K, Shave R, Stohr EJ. Cardiac output and related haemodynamics during pregnancy: A series of meta-analyses. Heart 2016;102:518–526.
276. De Haas S, Ghossein-Doha C, Geerts L, van Kuijk SMJ, van Drongelen J, Spaanderman MEA. Cardiac remodeling in normotensive pregnancy and in pregnancy complicated by hypertension: Systematic review and meta-analysis. Ultrasound Obstet Gynecol 2017;50:683–696.
277. Stewart RD, Nelson DB, Matulevicius SA, Morgan JL, McIntire DD, Drazner MH, et al. Cardiac magnetic resonance imaging to assess the impact of maternal habitus on cardiac remodeling during pregnancy. Am J Obstet Gynecol 2016;214:640.e1–640.e6.
278. Eghbali M, Wang Y, Toro L, Stefani E. Heart hypertrophy during pregnancy: A better functioning heart? Trends Cardiovasc Med 2006;16:285–291. https://doi .org/10.1016/j.tcm.2006.07.001
279. Parrott ME, Aljrbi E, Biederman DL, Montalvo RN, Barth JL, LaVoie HA. Maternal cardiac messenger RNA expression of extracellular matrix proteins in mice during pregnancy and the postpartum period. Exp Biol Med (Maywood) 2018;243:1220–1232.
280. Virgen-Ortiz A, Limón-Miranda S, Salazar-Enríquez DG, Melnikov V, Sánchez-Pastor EA, Castro-Rodríguez EM. Matrix metalloproteinases system and types of fibrosis in rat heart during late pregnancy and postpartum. Medicina (Kaunas) 2019;55:199.
281. Limon-Miranda S, Salazar-Enriquez DG, Muñiz J, Ramirez-Archila MV, Sanchez-Pastor EA, Andrade F, et al. Pregnancy differentially regulates the collagens types I and III in left ventricle from rat heart. Biomed Res Int 2014;2014:984785.
282. Tasar O, Kocabay G, Karagoz A, Kalayci Karabay A, Karabay CY, Kalkan S, et al. Evaluation of left atrial functions by 2-dimensional speckle-tracking echocardiography during healthy pregnancy. J Ultrasound Med 2019;38:2981–2988.
283. Cong J, Fan T, Yang X, Squires JW, Cheng G, Zhang L, et al. Structural and functional changes in maternal left ventricle during pregnancy: A three-dimensional speckle-tracking echocardiography study. Cardiovasc Ultrasound 2015;13:6.
284. Ferreira AF, Azevedo MJ, Morais J, Trindade F, Saraiva F, Diaz SO, et al. Cardiovascular risk factors during pregnancy impact the postpartum cardiac and vascular reverse remodeling. Am J Physiol Heart Circ Physiol 2023;325:H774–H789.
285. Kimura Y, Kato T, Miyata H, Sasaki I, Minamino-Muta E, Nagasawa Y, et al. Factors associated with increased levels of brain natriuretic peptide and cardiac troponin I during the peripartum period. PLoS One 2019;14:e0211982.
286. Umazume T, Yamada T, Yamada S, Ishikawa S, Furuta I, Iwano H, et al. Morphofunctional cardiac changes in pregnant women: Associations with biomarkers. Open Heart 2018;5:e000850.
287. Behrens I, Basit S, Lykke JA, Ranthe MF, Wohlfahrt J, Bundgaard H, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA 2016;315:1026–1033.
288. Umazume T, Yamada S, Yamada T, Ishikawa S, Furuta I, Iwano H, et al. Association of peripartum troponin I levels with left ventricular relaxation in women with hypertensive disorders of pregnancy. Open Heart 2018;5:e000829.
289. Ying W, Catov JM, Ouyang P. Hypertensive disorders of pregnancy and future maternal cardiovascular risk. J Am Heart Assoc 2018;7:e009382. https://doi.org /10.1161/JAHA.118.009382
290. Scantlebury DC, Kane GC, Wiste HJ, Bailey KR, Turner ST, Arnett DK, et al. Left ventricular hypertrophy after hypertensive pregnancy disorders. Heart 2015;101:1584–1590.
291. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al.; Group ESCSD. 2018 ESC Guidelines for themanagement of cardiovascular diseases during pregnancy: The Task Force for the management of cardiovascular diseases during pregnancy of the European Society of Cardiology (ESC). Eur Heart J 2018;39:3165–3241.
292. Dennis AT, Castro JM, Ong M, Carr C. Haemodynamics in obese pregnant women. Int J Obstet Anesth 2012;21:129–134.
293. Veille JC, Hanson R. Obesity, pregnancy, and left ventricular functioning during the third trimester. Am J Obstet Gynecol 1994;171:980–983. https://doi.org/10 .1016/0002-9378(94)90018-3
294. Buddeberg BS, Sharma R, O’Driscoll JM, Kaelin Agten A, Khalil A, Thilaganathan B. Cardiac maladaptation in obese pregnant women at term. Ultrasound Obstet Gynecol 2019;54:344–349.
295. Castleman JS, Ganapathy R, Taki F, Lip GY, Steeds RP, Kotecha D. Echocardiographic structure and function in hypertensive disorders of pregnancy: A systematic review. Circ Cardiovasc Imaging 2016;9:e004888.
296. Mesquita RF, Reis M, Beppler AP, Bellinazzi VR, Mattos SS, Lima-Filho JL, et al. Onset of hypertension during pregnancy is associated with long-term worse blood pressure control and adverse cardiac remodeling. J Am Soc Hypertens 2014;8:827–831.
297. Yuan L, Duan Y, Cao T. Echocardiographic study of cardiac morphological and functional changes before and after parturition in pregnancy-induced hypertension. Echocardiography 2006;23:177–182.
298. Vasapollo B, Novelli GP, Gagliardi G, Farsetti D, Valensise H. Pregnancy complications in chronic hypertensive patients are linked to pre-pregnancy maternal cardiac function and structure. Am J Obstet Gynecol 2020;223:425.e1–425.e13.
299. Buddeberg BS, Sharma R, O’Driscoll JM, Kaelin Agten A, Khalil A, Thilaganathan B. Cardiac maladaptation in term pregnancies with preeclampsia. Pregnancy Hypertens 2018;13:198–203.
300. Simmons LA, Gillin AG, Jeremy RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol 2002;283:H1627–H1633.
301. Ambrožic J, Lu ˇ coˇ vnik M, Prokšelj K, Toplišek J, Cvijic M. Dynamic changes ´ in cardiac function before and early postdelivery in women with severe preeclampsia. J Hypertens 2020;38:1367–1374.
302. Yu L, Zhou Q, Peng Q, Yang Z. Left ventricular function of patients with pregnancy-induced hypertension evaluated using velocity vector imaging echocardiography and N-terminal pro-brain natriuretic peptide. Echocardiography 2018;35:459–466.
303. Shahul S, Ramadan H, Nizamuddin J, Mueller A, Patel V, Dreixler J, et al. Activin A and late postpartum cardiac dysfunction among women with hypertensive disorders of pregnancy. Hypertension 2018;72:188–193.
304. Buddeberg BS, Sharma R, O’Driscoll JM, Kaelin Agten A, Khalil A, Thilaganathan B. Impact of gestational diabetes mellitus on maternal cardiac adaptation to pregnancy. Ultrasound Obstet Gynecol 2020;56:240–246.
305. Meera SJ, Ando T, Pu D, Manjappa S, Taub CC. Dynamic left ventricular changes in patients with gestational diabetes: A speckle tracking echocardiography study. J Clin Ultrasound 2017;45:20–27.
306. Aguilera J, Sanchez Sierra A, Abdel Azim S, Georgiopoulos G, Nicolaides KH, Charakida M. Maternal cardiac function in gestational diabetes mellitus at 35-36 weeks’ gestation and 6 months postpartum. Ultrasound Obstet Gynecol 2020;56:247–254.
307. Oliveira AP, Calderon IM, Costa RA, Roscani MG, Magalhaes CG, Borges VT. Assessment of structural cardiac abnormalities and diastolic function in women with gestational diabetes mellitus. Diab Vasc Dis Res 2015;12:175–180.
308. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002;25:1862–1868.
309. Li JW, He SY, Liu P, Luo L, Zhao L, Xiao YB. Association of gestational diabetes mellitus (GDM) with subclinical atherosclerosis: A systemic review and meta-analysis. BMC Cardiovasc Disord 2014;14:132.
310. Gunderson EP, Chiang V, Pletcher MJ, Jacobs DR, Quesenberry CP, Sidney S, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: The Coronary Artery Risk Development in Young Adults study. J Am Heart Assoc 2014;3:e000490.
311. Wilson MG, Ellison GM, Cable NT. Basic science behind the cardiovascular benefits of exercise. Heart 2015;101:758–765.
312. Richey PA, Brown SP. Pathological versus physiological left ventricular hypertrophy: A review. J Sports Sci 1998;16:129–141.
313. Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart 2013;99:1727–1733.
314. Weeks KL, McMullen JR. The athlete’s heart vs. the failing heart: Can signaling explain the two distinct outcomes? Physiology (Bethesda) 2011;26:97–105.
315. Kyselovic J, Leddy JJ. Cardiac fibrosis: The beneficial effects of exercise in cardiac ˇ fibrosis. Adv Exp Med Biol 2017;999:257–268.
316. Maron BJ, Pelliccia A, Spataro A, Granata M. Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. Br Heart J 1993;69:125–128.
317. Pedlar CR, Brown MG, Shave RE, Otto JM, Drane A, Michaud-Finch J, et al. Cardiovascular response to prescribed detraining among recreational athletes. J Appl Physiol (1985) 2018;124:813–820.
318. Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 2002;105:944–949.
319. Luthi P, Zuber M, Ritter M, Oechslin EN, Jenni R, Seifert B, et al. Echocardiographic findings in former professional cyclists after long-term deconditioning of more than 30 years. Eur J Echocardiogr 2008;9:261–267.
320. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol 1974;34:29–34. https://doi.org/10 .1016/0002-9149(74)90089-7
321. Toedebusch R, Belenchia A, Pulakat L. Diabetic cardiomyopathy: Impact of biological sex on disease development and molecular signatures. Front Physiol 2018;9:453.
322. Kiencke S, Handschin R, von Dahlen R, Muser J, Brunner-Larocca HP, Schumann J, et al. Pre-clinical diabetic cardiomyopathy: Prevalence, screening, and outcome. Eur J Heart Fail 2010;12:951–957.
323. Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: A two-faced disease with restrictive and dilated phenotypes. Eur Heart J 2015;36:1718–1727.
324. Battault S, Renguet E, Van Steenbergen A, Horman S, Beauloye C, Bertrand L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis 2020;113:736–748.
325. Ho KL, Karwi QG, Connolly D, Pherwani S, Ketema EB, Ussher JR, et al. Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 2022;65:411–423. https://doi.org/10.1007/s00125 -021-05637-7 326. van Veldhuisen SL, Gorter TM, van Woerden G, de Boer RA, Rienstra M, Hazebroek EJ, et al. Bariatric surgery and cardiovascular disease: A systematic review and meta-analysis. Eur Heart J 2022;43:1955–1969.
327. Doumouras AG, Wong JA, Paterson JM, Lee Y, Sivapathasundaram B, Tarride JE, et al. Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease: A population-based retrospective cohort study. Circulation 2021;143:1468–1480.
328. Shah RV, Murthy VL, Abbasi SA, Eng J, Wu C, Ouyang P, et al. Weight loss and progressive left ventricular remodelling: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur J Prev Cardiol 2015;22:1408–1418.
329. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G. Effects of bariatric surgery on cardiac structure and function: A systematic review and meta-analysis. Am J Hypertens 2014;27:146–156.
330. Sorimachi H, Obokata M, Omote K, Reddy YNV, Takahashi N, Koepp KE, et al. Long-term changes in cardiac structure and function following bariatric surgery. J Am Coll Cardiol 2022;80:1501–1512.
331. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the EuropeanSociety of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2024;26:5–17.
332. Frias JP, Davies MJ, Rosenstock J, Perez Manghi FC, Fernandez Lando L, Bergman BK, et al.; SURPASS-2 Investigators. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021;385:503–515.
333. Wilson JM, Nikooienejad A, Robins DA, Roell WC, Riesmeyer JS, Haupt A, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020;22:2451–2459.
334. Robinson E, Cassidy RS, Tate M, Zhao Y, Lockhart S, Calderwood D, et al. Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol 2015;110:20.
335. ClinicalTrials.gov. A Study of Tirzepatide (LY3298176) Compared With Dulaglutide on Major Cardiovascular Events in Participants With Type 2 Diabetes (SURPASS-CVOT). Identifier: NCT04255433. https://classic.clinicaltrials.gov/ct2 /show/NCT04255433 (25 April) 2024.
336. Takatsu M, Nakashima C, Takahashi K, Murase T, Hattori T, Ito H, et al. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome. Hypertension 2013;62:957–965. https://doi.org/10.1161 /HYPERTENSIONAHA.113.02093
337. Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc Diabetol 2018;17:111.
338. de Lucia C, Gambino G, Petraglia L, Elia A, Komici K, Femminella GD, et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ Heart Fail 2018;11:e004153.
339. Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H. Strategies of unloading the failing heart from metabolic stress. Am J Med 2020;133:290–296. https://doi .org/10.1016/j.amjmed.2019.08.035
340. Fernández-Solà J. The effects of ethanol on the heart: Alcoholic cardiomyopathy. Nutrients 2020;12:572.
341. Andersson C, Schou M, Gustafsson F, Torp-Pedersen C. Alcohol intake in patients with cardiomyopathy and heart failure: Consensus and controversy. Circ Heart Fail 2022;15:e009459.
342. Laonigro I, Correale M, Di Biase M, Altomare E. Alcohol abuse and heart failure. Eur J Heart Fail 2009;11:453–462.
343. Rodrigues P, Santos-Ribeiro S, Teodoro T, Gomes FV, Leal I, Reis JP, et al. Association between alcohol intake and cardiac remodeling. J Am Coll Cardiol 2018;72:1452–1462.
344. Awtry EH, Philippides GJ. Alcoholic and cocaine-associated cardiomyopathies. Prog Cardiovasc Dis 2010;52:289–299.
345. Nicolás JM, Fernández-Solà J, Estruch R, Paré JC, Sacanella E, UrbanoMárquez A, et al. The effect of controlled drinking in alcoholic cardiomyopathy. Ann Intern Med 2002;136:192–200. https://doi.org/10.7326/0003-4819-136-3 -200202050-00007 346. Guillo P, Mansourati J, Maheu B, Etienne Y, Provost K, Simon O, et al. Long-term prognosis in patients with alcoholic cardiomyopathy and severe heart failure after total abstinence. Am J Cardiol 1997;79:1276–1278.
347. Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res 2019;115:1838–1849.
348. Conceição G, Heinonen I, Lourenço AP, Duncker DJ, Falcão-Pires I. Animal models of heart failure with preserved ejection fraction. Neth Heart J 2016;24:275–286.
349. Miranda-Silva D, Gonçalves-Rodrigues P, Almeida-Coelho J, Hamdani N, Lima T, Conceição G, et al. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Sci Rep 2019;9:2956.
350. Dixon JA, Spinale FG. Large animal models of heart failure: A critical link in the translation of basic science to clinical practice. Circ Heart Fail 2009;2:262–271.
351. Walther T, Schubert A, Falk V, Binner C, Walther C, Doll N, et al. Left ventricular reverse remodeling after surgical therapy for aortic stenosis: Correlation to renin-angiotensin system gene expression. Circulation 2002;106:I23–I26.
352. Spannbauer A, Traxler D, Zlabinger K, Gugerell A, Winkler J, Mester-Tonczar J, et al. Large animal models of heart failure with reduced ejection fraction (HFrEF). Front Cardiovasc Med 2019;6:117.
353. Weinheimer CJ, Kovacs A, Evans S, Matkovich SJ, Barger PM, Mann DL. Load-dependent changes in left ventricular structure and function in a pathophysiologically relevant murine model of reversible heart failure. Circ Heart Fail 2018;11:e004351.
354. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: A review of animal models and clinical studies. J Am Coll Cardiol 1997;29:709–715. https://doi.org/10.1016 /s0735-1097(96)00592-x
355. Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: Basic biology and clinical relevance. Nat Rev Cardiol 2022;19:250–264.
356. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 2019;38:e100492.
357. Yáñez-Bisbe L, Garcia-Elias A, Tajes M, Almendros I, Rodríguez-Sinovas A, Inserte J, et al. Aging impairs reverse remodeling and recovery of ventricular function after isoproterenol-induced cardiomyopathy. Int J Mol Sci 2021;23:174.
358. Abdellatif M, Trummer-Herbst V, Heberle AM, Humnig A, Pendl T, Durand S, et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation 2022;145:1853–1866.
359. Alvandi Z, Bischoff J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler Thromb Vasc Biol 2021;41:2357–2369.
360. Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2019;73:190–209.
361. D’Amario D, Migliaro S, Borovac JA, Restivo A, Vergallo R, Galli M, et al. Microvascular dysfunction in heart failure with preserved ejection fraction. Front Physiol 2019;10:1347.
362. Liang Y, Ding R, Wang J, Gong X, Yu Z, Pan L, et al. Prediction of response after cardiac resynchronization therapy with machine learning. Int J Cardiol 2021;344:120–126.
363. Riolet C, Menet A, Mailliet A, Binda C, Altes A, Appert L, et al. Clinical significance of global wasted work in patients with heart failure receiving cardiac resynchronization therapy. J Am Soc Echocardiogr 2021;34:976–986. https://doi .org/10.1016/j.echo.2021.06.008声明:本文仅供医疗卫生专业人士了解最新医药资讯参考使用,不代表本平台观点。该信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议,如果该信息被用于资讯以外的目的,本站及作者不承担相关责任。
凡原创文章版权属《国际循环》所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有之内容须在醒目位置处注明“转自《国际循环》”