Th1 细胞的概述
Th1 细胞是T辅助细胞(T-helper cells, Th)家族的一种重要亚型,属于CD4+ T细胞群体。Th1 细胞通过分泌细胞因子来调控免疫系统的细胞介导免疫反应,尤其是针对病毒、细胞内病原体(如某些细菌和寄生虫)及某些肿瘤细胞的免疫防御。Th1 细胞主要通过促进细胞毒性T细胞(CTLs)的增殖和激活,触发强效的炎症反应。
Th1 细胞的分化和形成机制
Th1 细胞的功能
Th1 细胞通过分泌特定的细胞因子来执行其功能,主要包括IL-2和干扰素γ(IFN-γ),这些细胞因子在免疫系统中发挥多种关键作用:
- IL-2(白介素-2):IL-2 主要促进T细胞增殖。当Th1细胞分泌IL-2时,T细胞(包括效应T细胞和记忆T细胞)大量增殖,特别是在TCR被激活的情况下。IL-2在感染严重时的高浓度释放,会促使大量效应细胞的增殖,增强机体的免疫应答。
- IFN-γ(干扰素γ):IFN-γ 是Th1 细胞的主要效应分子之一,它能够激活多个细胞类型的干扰素受体,启动磷酸化级联反应,诱导抗病毒和抗细菌基因(称为干扰素刺激基因,ISGs)的表达。通过这一机制,IFN-γ能:
Th1 细胞在肿瘤免疫中的作用
肿瘤免疫中的Th1细胞起到了至关重要的调控作用,它们通过激活细胞毒性T细胞和增强巨噬细胞的活性,直接或间接地攻击肿瘤细胞。具体机制如下:
Th1 细胞在过敏反应中的作用
与Th2 细胞在过敏反应中的主要作用不同,Th1 细胞通常与过敏反应的抑制有关。Th1和Th2细胞之间存在免疫平衡关系,Th1 细胞可以通过多种机制抑制过敏反应:
- IFN-γ 的抗过敏作用:Th1 细胞分泌的IFN-γ能够抑制Th2细胞的活化和功能,从而减少Th2细胞介导的IgE产生和肥大细胞的脱颗粒反应。这一机制可以减少过敏反应的发生。
- 免疫应答的平衡:在免疫应答中,Th1 细胞主导的细胞介导免疫和Th2 细胞主导的体液免疫相互抑制。因此,当Th1 细胞活化并主导免疫应答时,Th2 细胞的效应功能会被抑制,从而降低过敏反应的发生风险。
参考文献
Zhu, J., & Paul, W. E. (2010). Heterogeneity and plasticity of T helper cells. Cell Research, 20(1), 4-12.O'Shea, J. J., & Paul, W. E. (2010). Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science, 327(5969), 1098-1102.Liao, W., Lin, J. X., & Leonard, W. J. (2011). IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current Opinion in Immunology, 23(5), 598-604.Bevan, M. J. (2011). Helping the helpers. Nature Immunology, 12(4), 275-277.Raphael, I., Nalawade, S., Eagar, T. N., & Forsthuber, T. G. (2015). T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 74(1), 5-17.Lazarevic, V., & Glimcher, L. H. (2011). T-bet in disease. Nature Immunology, 12(7), 597-606.Szabo, S. J., Sullivan, B. M., Peng, S. L., & Glimcher, L. H. (2003). Molecular mechanisms regulating Th1 immune responses. Annual Review of Immunology, 21, 713-758.Amsen, D., Spilianakis, C. G., & Flavell, R. A. (2009). How are T(H)1 and T(H)2 effector cells made?. Current Opinion in Immunology, 21(2), 153-160.Oestreich, K. J., & Weinmann, A. S. (2012). Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Reviews Immunology, 12(11), 799-804.Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4+T cells: differentiation and functions. Clinical & Developmental Immunology, 2012.Mullen, A. C., & Reiner, S. L. (2001). Th1 and Th2 cell differentiation: a question of stability. Nature Immunology, 2(11), 933-939.Murphy, K. M., & Reiner, S. L. (2002). The lineage decisions of helper T cells. Nature Reviews Immunology, 2(12), 933-944.Knutson, K. L., & Disis, M. L. (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunology, Immunotherapy, 54(8), 721-728.Restifo, N. P., Dudley, M. E., & Rosenberg, S. A. (2012). Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology, 12(4), 269-281.Gerner, M. Y., Casey, K. A., Kastenmuller, W., & Germain, R. N. (2017). Dendritic cell and antigen dispersal landscapes regulate T cell immunity. Journal of Experimental Medicine, 214(10), 3105-3122.Swain, S. L., McKinstry, K. K., & Strutt, T. M. (2012). Expanding roles for CD4+ T cells in immunity to viruses. Nature Reviews Immunology, 12(2), 136-148.Harty, J. T., & Badovinac, V. P. (2008). Shaping and reshaping CD8+ T-cell memory. Nature Reviews Immunology, 8(2), 107-119.Curtsinger, J. M., Lins, D. C., & Mescher, M. F. (2003). Signal 3 determines tolerance versus full activation of naïve CD8 T cells: dissociating proliferation and development of effector function. Journal of Experimental Medicine, 197(9), 1141-1151.Sallusto, F., Geginat, J., & Lanzavecchia, A. (2004). Central memory and effector memory T cell subsets: function, generation, and maintenance. Annual Review of Immunology, 22, 745-763.Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., & Schreiber, R. D. (2001). IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107-1111.