图1所示。植物苯丙素/苯类生物合成途径示意图。苯丙氨酸是通过莽草酸和芳香氨基酸生物合成途径在质体中合成的,是挥发性(右侧)和非挥发性(左侧)专门代谢物的前体。显示了具有代表性的挥发性化合物的化学结构,这些化合物有助于花和水果的香气和风味。虚线箭头表示几个酶促步骤。
图2 植物中莽草酸和芳香族氨基酸生物合成途径示意图。只描述了一些酶。虚线黑色箭头表示几个酶促步骤。红色箭头表示异源表达的细菌酶AroG*和PheA*携带的酶促步骤。3-脱氧-d-阿拉伯糖-2-庚糖酸7-磷酸合酶;CM, 分支酸变异酶;PDT,预苯酸脱水酶。
2.2 靶向苯丙氨酸生物合成(PheA*)
另一种在转基因植物中异源表达的细菌基因是突变的PheA基因(PheA*),该基因编码一个反馈不敏感的双功能分支酸突变酶/预苯酸脱水酶基因。PheA基因通过预苯二酸盐将分支酸盐转化为苯丙酮酸盐,将碳通量引导到导致苯丙氨酸合成的AAAs途径的苯丙酮酸分支(图2)。因此,PheA*的表达有望将碳通量更特异性地引导到苯丙氨酸及其衍生的特殊代谢物[10]。PheA*基因在拟南芥幼苗中的表达导致苯丙氨酸水平升高[22]。有趣的是,它影响了来自所有三种AAAs的特殊代谢物的水平。PheA*过表达系苯丙氨酸和酪氨酸衍生的几种特化代谢物水平升高,但色氨酸衍生的几种特化代谢物水平降低。虽然这些变化的机制原因尚不清楚,但这些结果表明,分支酸的AAA生物合成通量与其代谢为各种专门代谢物之间存在调节交叉相互作用[22]。相比之下,在番茄果实中表达PheA*只会导致AAAs或任何已鉴定的挥发性代谢物的水平发生微小变化[26],同时表达AroG*和PheA*基因的转基因植株的番茄果实的代谢谱主要受AroG*基因表达的影响。然而,表达这两个基因的番茄果实的香气属性是独特的,与表达单一基因的品系不同,这表明PheA*基因对整体代谢谱有贡献[26]。综上所述,这些最近的研究表明,增强从初级代谢到专门的次级代谢物的通量是一种很有前途的代谢工程方法,可以识别和可能消除专门代谢物生物合成的瓶颈,并增强花和水果的香气。最近一项关于拟南芥转录因子AtMYB12在番茄果实中表达结果的研究支持了这一结论[28]。AtMYB12是调节拟南芥黄酮醇生物合成的转录因子。番茄果实中AtMYB12的表达诱导了编码黄酮醇和羟基肉桂酸酯生物合成酶的基因的表达,导致苯丙素含量异常高,特别是黄酮醇和咖啡基醌酸[29]。有趣的是,AtMYB12还诱导了包括DAHPS在内的初级代谢酶编码基因的表达[28]。结果表明,表达AtMYB12的番茄中苯丙素含量的增加是次级代谢编码酶基因转录激活和碳通量通过初级代谢改变向AAA生物合成重编程的共同结果。因此,将莽草酸和AAAs生物合成途径的通量增强与下游酶或特定代谢物分支途径的额外操作相结合,进一步将通量导向特定的理想挥发性代谢物,可能会进一步改善香气和风味。
3. 结论
综上所述,利用代谢工程技术可以为不同植物种类的初级代谢向特化代谢的通道调节、不同代谢途径的交叉作用以及特化次生代谢物库提供新的信息。反过来,获得各种次生代谢物及其产生的代谢途径的信息可以促进基于知识的育种策略的发展。此外,代谢工程为刺激专门代谢物的产生和提高各种植物器官的质量开辟了一个新的场所。特别是,它可以克服不同作物的风味和香气与长保质期之间普遍存在的负相关关系,这是迄今为止传统育种难以解决的问题。
参考文献:
Pichersky, E.; Lewinsohn, E. Convergent Evolution in Plant Specialized Metabolism. Annu. Rev. Plant Biol. 2011, 62, 549–566. [Google Scholar] [CrossRef] [PubMed]
Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed]
Baldwin, I.T. Plant volatiles. Curr. Biol. 2010, 20, R392–R397. [Google Scholar] [CrossRef] [PubMed]
Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
Pierik, R.; Ballaré, C.L.; Dicke, M. Ecology of plant volatiles: Taking a plant community perspective. Plant Cell Environ. 2014, 37, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
Aragüez, I.; Valpuesta, V. Metabolic engineering of aroma components in fruits. Biotechnol. J. 2013, 8, 1144–1158. [Google Scholar] [CrossRef] [PubMed]
Dudareva, D.; Pichersky, E. Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 2008, 19, 181–189. [Google Scholar] [CrossRef] [PubMed]
Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef] [PubMed]
Tzin, V.; Galili, G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 2010, 3, 956–972. [Google Scholar] [CrossRef] [PubMed]
Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
Schuurink, R.C.; Haring, M.A.; Clark, D.G. Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci. 2006, 11, 20–25. [Google Scholar] [CrossRef] [PubMed]
Tieman, D.; Taylor, M.; Schauer, N.; Fernie, A.R.; Hanson, A.D.; Klee, H.J. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 2006, 103, 8287–8292. [Google Scholar] [CrossRef] [PubMed]
Hoffmann, T.; Kurtzer, R.; Skowranek, K.; Kiessling, P.; Fridman, E.; Pichersky, E.; Schwab, W. Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metab. Eng. 2011, 13, 527–531. [Google Scholar] [CrossRef] [PubMed]
Lunkenbein, S.; Coiner, H.; de Vos, C.H.R.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.; Salentijn, E.M. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria × ananassa). J. Agric. Food Chem. 2006, 54, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
Zvi, M.M.; Shklarman, E.; Masci, T.; Kalev, H.; Debener, T.; Shafir, S.; Ovadis, M.; Vainstein, A. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol. 2012, 195, 335–345. [Google Scholar] [CrossRef] [PubMed]
Aranovich, D.; Lewinsohn, E.; Zaccai, M. Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biol. Technol. 2007, 43, 255–260. [Google Scholar] [CrossRef]
Beekwilder, J.; Alvarez-Huerta, M.; Neef, E.; Verstappen, F.W.A.; Bouwmeester, H.J.; Aharoni, A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol. 2004, 135, 1865–1878. [Google Scholar] [CrossRef] [PubMed]
Guterman, I.; Masci, T.; Chen, X.L.; Negre, F.; Pichersky, E.; Dudareva, N.; Weiss, D.; Vainstein, A. Generation of phenylpropanoid pathway derived volatiles in transgenic plants: Rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol. Biol. 2006, 60, 555–563. [Google Scholar] [CrossRef] [PubMed]
Lücker, J.; Bouwmeester, H.J.; Schwab, W.; Blaas, J.; van der Plas, L.H.W.; Verhoeven, H.A. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranosid. Plant J. 2001, 27, 315–324. [Google Scholar] [CrossRef] [PubMed]
Lavy, M.; Zuker, A.; Lewinsohn, E.; Larkov, O.; Ravid, U.; Vainstein, A.; Weiss, D. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 2002, 9, 103–111. [Google Scholar] [CrossRef]
Tzin, V.; Malitsky, S.; Aharoni, A.; Galili, G. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis. Plant J. 2009, 60, 156–167. [Google Scholar] [CrossRef] [PubMed]
Tzin, V.; Malitsky, S.; Ben Zvi, M.M.; Bedair, M.; Sumner, L.; Aharoni, A.; Galili, G. Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 2012, 194, 430–439. [Google Scholar] [CrossRef] [PubMed]
Oliva, M.; Ovadia, R.; Perl, A.; Bar, E.; Lewinsohn, E.; Galili, G.; Oren-Shamir, M. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida. Plant Biotechnol. J. 2015, 13, 125–136. [Google Scholar] [CrossRef] [PubMed]
Tzin, V.; Rogachev, I.; Meir, S.; Moyal Ben Zvi, M.; Masci, T.; Vainstein, A.; Aharoni, A.; Galili, G. Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. J. Exp. Bot. 2013, 64, 4441–4452. [Google Scholar] [CrossRef] [PubMed]
Tzin, V.; Rogachev, I.; Meir, S.; Moyal Ben Zvi, M.; Masci, T.; Vainstein, A.; Aharoni, A.; Galili, G. Altered levels of aroma and volatiles by metabolic engineering of shikimate pathway genes in tomato fruits. AIMS Bioengin. 2015, 2, 75–92. [Google Scholar] [CrossRef]
Manela, N.; Oliva, M.; Ovadia, R.; Sikron-Persi, N.; Ayenew, B.; Fait, A.; Galili, G.; Perl, A.; Weiss, D.; Oren-Shanir, M. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 2015, 6, 538. [Google Scholar] [CrossRef] [PubMed]
Zhang, Y.; Butelli, E.; Alseekh, S.; Tohge, T.; Rallapalli, G.; Luo, J.; Kawar, P.G.; Hill, L.; Santino, A.; Fernie, A.R.; et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat. Commun. 2015, 26, 8635. [Google Scholar] [CrossRef] [PubMed]
Luo, J.; Butelli, E.; Hill, L.; Parr, A.; Niggeweg, R.; Bailey, P.; Weisshaar, B.; Martin, C. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. Plant J. 2008, 56, 316–326. [Google Scholar] [CrossRef] [PubMed]
Peled-Zehavi H, Oliva M, Xie Q, Tzin V, Oren-Shamir M, Aharoni A, Galili G. Metabolic Engineering of the Phenylpropanoid and Its Primary, Precursor Pathway to Enhance the Flavor of Fruits and the Aroma of Flowers. Bioengineering. 2015; 2(4):204-212. https://doi.org/10.3390/bioengineering2040204