一,一年级数学不能乱教;
二、一年级数学不是谁都能教的;
三,一年级的数学教学是一项非常专业的活。
往往,课堂基本止步于计算。很多家庭教育的数学也是如此。
会算9+6吗?
一个学生他说9+6把他想成10+6,这样结果错了,多算了1个,再将16-1就好了;
还有一个学生:9+6=10+5,就像跷跷板为了保持平衡,一边多1,另一边就得减1,显然,这种思考也会被漠视。
其实,后两个孩子的思考多么宝贵呀,他们不但会算,而且指向了等于号的恒等作用,他们在用关系结构想出答案,第一个孩子找到了9+6=10+6-1,第二个孩子领悟到了9+6=(10-1)+(5-1),这不就是早期代数思维吗?
然而,思考不但没有得到呵护,反而被一种声音所压抑。
为什么这样,因为后两种思考,大人根本没想到。
正是由于教的不专业,导致了学生会算9+6,却难以计算6+9,更会在( )=9+6和9+6=( )+5的犯错误。所以,我们真的懂“=”吗?
孩子们都有着天生的数学敏感,他们会用自己独有的方法解决数学问题,
比如算9+7,有学生并没有拆7为1和6,将9和1凑成十;而是运用了守恒关系,想成了(9+1)+(7-1)。
比如比较2/3和4/7的大小,在没有学习通分之前,学生会说2是4的一半,3小于7的一半,所以2/3大于4/7;或者说2/3可以看作两个饼三个人平分,4/7可以看作先有两个饼三个人平分,后有两个饼四人平分,后一次每个人分到的要少,所以4/7小于2/3。
可一旦老师教了异分母分数大小比较之后,便只剩下一条道路了。
我们的课堂每天都会遭遇学生天马行空的挑战,如果我们以我们自以为是的标准方法和标准答案,去填满孩子们的大脑,就可能会阻断他们个性的自由之路。
由此我们更要警醒的是,不是后进生难教,而是好孩子更难教,
我们要问自己匹配得上他们的数学才华吗?