两组率优效无效分析的实例模拟

2024-06-15 08:05   上海  

例:A parallel two-group design will be used to test whether the Group 1 (treatment) proportion (P1) is greater than the Group 2 (control) proportion (P2) (H0: P1 - P2 ≤ 0 versus H1: P1 - P2 > 0).

The comparison will be made using a one-sided, two-sample Z-Test with unpooled variance, with a Type I error rate (α) of 0.025. The control group proportion (P2) is assumed to be 0.2. To detect a proportion difference (P1 - P2) of 0.2 (or P1 of 0.4) with 90% power, the number of subjects needed will be 106 in Group 1 (treatment) and 106 in Group 2 (control).

One non-binding futility analysis at 50% information fraction.

East tool:

1. 录入look=1。

2.录入 look=2,futility的boundary family选择conditonal power,点击Design的两组率来compute CP,然后点击Non-binding,Interim=0.5。

3.无效的结论是CP<50%; 除了CP,Boundary scales可以选择,effect size( an observed point estimate scale relative to the hypothesized effect),Z 统计量,CP(d=an observed point estimate scale), PP(noninformative prior),β spent。
上述各种scale内在关系如下:

Food and Drug Administration, 2019, 适应性设计指南,通常采用Non-binding的无效性界值,其与有效性界值无关,不会增加假阳性率,但power会产生损失

针对例子的Power损失计算如下:

Power 损失=0.901(第二张截图,只有look=1的power)-0.889(look=2,总样本量不变,但是50%的数据时候,做non-binding的无效分析)=0.012

Scheme properties除了包含Power的损失,还有一个指标是Stop under H0(参考最后一图片boundary crossing probablity under H0)。

但大家需要考虑的问题是:

1.非劣效和优效是否不同。

2.两组的差异是否一直是常数。

欢迎后台留言讨论。

参考文献:

Gallo P, Mao L, Shih VH (2014). Alternative views on setting clinical trial futility criteria. J Biopharm Stat 24:976-93.

Food and Drug Administration, 2019. Adaptive designs for Clinical trials of drugs and biologics guidance for industry. FDA.


流行病学与卫生统计学
Pivot数据交流平台,每周分享临床试验研究设计、实施、统计等相关信息。
 最新文章