化疗是一种传统的癌症治疗方法。然而,化疗药物由于无法区分正常细胞和肿瘤细胞,通常具有高度毒副作用。利用肿瘤代谢不规律的特点,在缺氧、过表达酶、酸性、活性氧(ROS)等内源性刺激的基础上,探索了肿瘤微环境(TME)反应性前药。其中,ROS作为关键代谢产物引起了人们的极大兴趣。到目前为止,已经开发出一系列ROS敏感基团(如硫化丙烯、硼酸酯、硫酮、碲、硒、二茂铁和花青素)来构建ROS活化的前药。然而,TME中ROS的含量不足以达到预期的药物释放。因此,开发具有自增强特性的ROS活化前药是一个很大的挑战。
葡萄糖氧化酶(GOx)诱导的饥饿疗法在癌症治疗中显示出巨大的潜力,其中GOx特异性催化β-D-葡萄糖氧化产生大量过氧化氢(H2O2)。H2O2水平的升高可能会提高ROS活化前药的活化效率。然而,氧化过程中氧气(O2)被消耗,导致肿瘤严重缺氧,从而削弱了O2依赖型抗肿瘤药物的疗效,如Ⅱ型光敏剂(PSs)。相比之下,Ⅰ型PSs由于其对O2的依赖性较低,是很好的候选者。例如,5-(乙基氨基)-9-二乙基氨基苯并[a]吩噻嗪氯类似物(NBS)作为Ⅰ型PS用于光动力治疗(PDT),在660 nm激光照射下,即使在低氧水平下,也能通过Haber Weiss/Fenton反应产生超氧自由基(O2−•)。因此,GOx与不依赖O2的ROS激活前药联合使用可以促进药物释放,实现饥饿与其他治疗的有效协同。
ROS可激活异二聚体前药负载酶组装(NTP@GOx)的示意图(图源自Advanced Science )
研究开发了一种可ROS激活的异二聚体前药负载酶组件,用于多种治疗剂的自我促进可编程释放。异二聚体前药NBS-TK-PTX(即NTP)由NBS、紫杉醇(PTX)和ROS响应型硫酮(TK)连接物组成。NTP由于疏水相互作用与GOx表现出很强的结合亲和力(−8.1 kcal mol−1),从而获得NTP@GOx组装。值得注意的是,NTP@GOx中GOx的酶活性被NTP抑制。可编程释放是通过以下步骤实现的:i) NTP@GOx在酸性TME中部分解离,从而释放一小段NTP和GOx。因此,GOx的酶活性恢复;ii) GOx触发的pH降低进一步促进了NTP@GOx的解离,从而加速了NTP和GOx的大量释放;iii)药前NTP的TK连接被GOx催化产生的H2O2切割,从而分别加速了NBS在Ⅰ型PDT和PTX化疗中的释放。在荧光(FL)和光声(PA)双模成像导航下,NTP@GOx显示出GOx介导的饥饿治疗、PTX诱导的化疗和基于NBS的Ⅰ型PDT的协同治疗效果。
参考消息:
https://onlinelibrary.wiley.com/doi/10.1002/advs.202409960
—END—
内容为【iNature】公众号原创,
转载请写明来源于【iNature】
微信加群
iNature汇集了4万名生命科学的研究人员及医生。我们组建了80个综合群(16个PI群及64个博士群),同时更具专业专门组建了相关专业群(植物,免疫,细胞,微生物,基因编辑,神经,化学,物理,心血管,肿瘤等群)。温馨提示:进群请备注一下(格式如学校+专业+姓名,如果是PI/教授,请注明是PI/教授,否则就直接默认为在读博士,谢谢)。可以先加小编微信号(love_iNature),或者是长按二维码,添加小编,之后再进相关的群,非诚勿扰。
投稿、合作、转载授权事宜
请联系微信ID:13701829856 或邮箱:iNature2020@163.com
觉得本文好看,请点这里!