文章信息
钠离子电池硬碳负极研究进展
赵 昊1,陈 冬1,2,郑丽华1,2,刘桃松1
(1.浙江华宇钠电新能源科技有限公司,浙江 杭州 311305;2.浙江南都电源动力股份有限公司,浙江 杭州 311305)
摘要:锂离子电池(LIB)因其能量密度高、循环寿命长而被广泛用于移动储能。然而,锂资源的有限严重限制了其在大规模储能领域的应用。近年来,钠离子电池(SIB)由于成本低、安全性高等优点,成为了LIB有前途的替代品。硬碳具有较低的氧化还原电位、稳定的结构、较大层间距和相对较低的成本,被广泛用作SIB的负极材料。然而,硬碳负极较差的倍率性能和较低的首次库仑效率限制了SIB的性能。综述了钠离子电池硬碳负极的研究进展,包括硬碳储钠机理、前驱体选择以及制备工艺对硬碳性能的影响。
关键词:钠离子电池;硬碳;负极材料
1硬碳储钠机理
硬碳在平面和堆积方向上缺乏长程有序结构,微观结构为皱褶和扭曲的石墨烯碎片组合,部分弯曲的石墨烯片局部堆叠形成随机取向的多层石墨状纳米畴,而其他扭曲的石墨烯片则形成大小不一的气孔[8]。硬碳材料的结构复杂多样,具有吸收钠离子能力的主要活性位点为开放孔隙表面、石墨烯片缺陷部位、石墨烯层间和纳米孔隙[9]。对于钠离子在硬碳中的储存行为,研究者们提出了几种典型的反应模型,如图1所示[9]。
(a)插层-吸附;(b)吸附-插层;(c)三段式;(d)吸附-填充
图1 不同硬碳储钠机理模型
2硬碳制备
2.1 前驱体选择
图2 L-HC、H-HC和P-HC第5周循环充放电曲线(0.1 C)
表1 部分生物质前驱体组成及性能[18]
前驱体 | 灰分/% | 木质素/% | 纤维素/% | 半纤维素/% | 首效/% | 可逆比容量/(mAh·g-1) |
GI-1 | 3.8 | 24.0 | 29.1 | 22.2 | 70.1 | 225.9 |
GI-2 | 2.2 | 27.5 | 22.3 | 27.9 | 82.2 | 299.1 |
GI-3 | 2.3 | 25.1 | 44.3 | 22.6 | 81.7 | 291.4 |
GI-4 | 4.6 | 22.0 | 46.8 | 24.1 | 74.9 | 273.6 |
GI-5 | 2.6 | 27.3 | 32.9 | 19.4 | 73.9 | 265.3 |
GI-6 | 1.3 | 27.5 | 38.5 | 27.3 | 83.8 | 314.7 |
GI-7 | 0.8 | 26.5 | 41.3 | 25.3 | 84.7 | 298.1 |
GII-10 | 2.8 | 20.2 | 45.3 | 22.6 | 74.1 | 254.6 |
GII-11 | 8.3 | 20.5 | 37.5 | 23.8 | 59.9 | 200.3 |
GII-12 | 9.3 | 22.4 | 38.1 | 24.7 | 60.5 | 231.8 |
GII-13 | 6.6 | 24.7 | 39.5 | 25.7 | 69.2 | 243.8 |
GII-14 | 6.3 | 16.4 | 20.6 | 31.3 | 63.7 | 241.5 |
GIII-19 | 4.2 | 62.7 | 7.8 | 21.9 | 79.1 | 263.3 |
GIII-20 | 3.2 | 25.9 | 37.0 | 26.4 | 79.1 | 297.9 |
GIII-21 | 1.9 | 15.9 | 38,4 | 34.8 | 78.0 | 293.1 |
GIII-22 | 0.7 | 43.9 | 21.1 | 30.6 | 81.6 | 310.6 |
2.2 优化策略
图3 不同热解温度硬碳的(a)XRD图谱和(b)Roman光谱[19]
(a)水热预处理;(b)未水热处理;(c)倍率性能;(d)0.5 C循环性能[24]
图4 硬碳的扫描电镜图和电化学测试结果
图5 不同杂原子掺杂硬碳的(a)XRD图和(b)首周充放电曲线[28]
3结语
(1)在钠的储存机制方面,由于HC的复杂性和表征技术的局限性,对斜坡区和平台区储钠行为的归属仍存在争议。硬碳中钠储存机制的不确定性也限制了高容量硬碳负极的设计。随着表征技术的发展,明确的储钠机制将被揭示,为高性能硬碳的合成指明方向。
(2)在前驱体选择方面,生物质材料因其绿色环保、经济性等特点被广泛用于生产硬碳。对于不同种类的生物质,要考虑其组成及灰分对硬碳性能的影响。对于量产化来说,生物质原料的产量及稳定性也至关重要。
(3)在制备工艺优化方面,通过温度控制、预处理和掺杂等方法可调控硬碳结构,改善硬碳性能。尽管SIB硬碳负极的研究已经取得了一定进展,但在实际应用中仍存在诸多障碍与挑战。目前硬碳的制备策略仍存在工艺复杂、成本较高等问题,对硬碳负极材料的研究还需进一步深入。
参考文献:
[1]KIM J, CHOI M, SHIN K, et al. Rational design of carbon nanomaterials for electrochemical sodium storage and capture[J]. Advanced Materials, 2019, 31: 1803444.
[2]李新宏. 锂离子电池在储能上的应用[J].新材料产业, 2012(9): 83-87.
[3]郑安川, 齐翊博, 许志鹏, 等. 基于生物质硬碳钠离子电池负极材料研究进展[J].材料开发与应用, 2020, 35: 88-95.
[4]NAYAK P, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57: 102-120.
[5]CAI C, CHEN Y, HU P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small, 2022, 18: 2105303.
[6]SAUREL D, ORAYECH B, XIAO B, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8: 1703268.
[7]黄剑锋, 王彩薇, 李嘉胤, 等. 钠离子电池碳基负极材料的研究进展[J].材料导报, 2017, 31: 19-23.
[8]KUBOTA K, SHIMADZU S, YABUUCHI N, et al. Structural analysis of sucrose‐derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion[J].Chemistry of Materials, 2020, 32: 2961-2977.
[9]CHEN X, LIU C, FANG Y, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150.
[10] STEVENS D, DAHN J. High capacity anode materials for rechargeable sodium‐ion batteries[J].Journal of the Electrochemical Society, 2000, 147: 1271-1274.
[11] DING J, WANG H, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7: 11004-11015.
[12]CAO Y, XIAO L, SUSHKO M, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12: 3783-3787.
[13]BOMMIER C, SURTA T, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15: 5888-5892.
[14]ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6: 1501588.
[15]ZHAO L, HU Z, LAI W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11: 2002704.
[16]LIU T, LI X. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review[J]. Materials Technology, 2019, 34: 232-245.
[17]DOU X, HASA I, HEKMATFAR M, et al. Pectin, hemicellulose, or lignin? Impact of the biowaste source on the performance of hard carbons for sodium-ion batteries[J]. ChemsusChem, 2017, 10: 2668-2676.
[18]SAAVEDRA R, SIMONIN L, GHIMBEU C, et al. Impact of the biomass precursor composition in the hard carbon properties and performance for application in a Na-ion battery[J]. Fuel Processing Technology, 2022, 231: 107223.
[19]WANG Q, ZHU X, LIU Y, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666.
[20]ZHANG T, MAO J, LIU X, et al. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries[J]. RSC Advances, 2017, 7: 41504-41511.
[21]GUO S, CHEN Y, TONG L, et al. Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries: Preparation and application[J]. Electrochimica Acta, 2022, 410: 140017.
[22]BEDA A, MEINS J, TABERNA P, et al. Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries[J]. Sustainable Materials and Technologies, 2020, 26: e00227.
[23]DOU X, HASA I, SAUREL D, et al. Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium-ion battery anodes[J]. ChemSusChem 2018, 11: 3276-3285.
[24]XU Z, WANG J, GUO Z, et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes[J]. Advanced Energy Materials, 2022, 12: 2200208.
[25]CHEN F, DI Y, SU Q, et al. Vanadium-modified hard carbon spheres with sufficient pseudo graphitic domains as high-performance anode for sodium-ion batteries[J]. Carbon Energy, 2023, 5: e191.
[26]ABDULLAH F, DUPONT C, MICHEL J, et al. River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106604.
[27]CHEN C, HUANG Y, ZHU Y, et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 1497-1506.
[28]LI Z, BOMMIER C, CHONG Z, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by Heteroatom Doping[J]. Advanced Energy Materials, 2017, 7: 1602894.
[29]OU H, HUANG J, ZHOU Y, et al. Surface-dominated ultra-stable sodium and potassium storage enabled by N/P/O tri-doped porous carbon[J]. Chemical Engineering Journal, 2022, 450: 138444.
[30]LI Y, XIAO K, HUANG C, et al. Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology[J]. Nano-Micro Letters, 2021, 13: 1-14.