本周问题:骰子点数之差
我们玩一个游戏,开始时把一个棋子放在一排方格的中央。每一回合,我们各自掷一个六面的骰子。如果掷出的两个骰子的点数之差小于或等于2,棋子向左移动一格。如果点数差大于2,棋子向右移动一格。如果棋子到达排的左端,我赢;如果棋子到达右端,你赢。
我提供的是一个公平的游戏,还是某个方向更有优势?
游戏被调整了,如果点数差小于或等于2,棋子仍然向左移动一格,但如果点数差大于2,棋子向右移动两格。在这些规则下,棋子返回起始位置所需的最少掷骰次数是多少?
这个调整后的游戏公平吗?
(来源:New Scientist,BrainTwister #28)
原文:
We play a game starting with a counter in the centre of a row of squares. Every turn, we each roll a six-sided die. If the difference between the values rolled is 2 or less, the counter moves one place to the left. If the difference is more than 2, it moves one place to the right. I win if the counter reaches the left-hand end of the row and you win if it gets to the right.
Am I offering you a fair game or does one direction have an advantage?
The game is adjusted so that if the difference is 2 or less, the counter still moves one place to the left, but if the difference is more than 2, it moves two places to the right. Under these rules, what is the smallest number of rolls after which the counter could return to its starting position?
Is this adjusted game fair?
上期答案:小数的舞蹈
1/3可以写成 0.33333…(后面有无限个 3),而4/9可以写成 0.44444…。我们称这些为循环小数。
用计算器看看1/11、 2/11和3/11的十进制形式是多少。你能预测7/11和10/11的小数形式会是什么吗?
1/7有一种不同类型的模式:计算1/7和2/7,然后尝试预测3/7、4/7、5/7和6/7是什么。
你能在1/13的倍数中找到任何模式吗?(它与1/7的模式类似,但你可能需要计算超过两个分数才能预测其余的。)
答案:
1/11 = 0.090909…,“09”不断重复。2/11 = 0.181818…,3/11 = 0.272727…。重复的两个数字是分子乘以9的结果,因此7/11 = 0.636363…,10/11 = 0.909090…(这个重复出现是因为9 × 11 = 99)。1/7 = 0.142857…(因为142857 × 7 = 999,999,因此有六位数的循环)。2/7 = 0.285714…,同样是六个数字循环,但从2开始。按数字顺序排列其他选项,我们可以预测3/7 = 0.428571…,4/7 = 0.571428…,5/7 = 0.714285…,6/7 = 0.857142。十三分之几有两种不同的字符串,基于1/13 = 0.076923…和2/13 = 0.153846…。通过找到它们的所有旋转方式并按数字顺序排列,我们可以预测3/13 = 0.230769…等。
原文:
1/11 = 0.090909…, with “09” repeating forever. 2/11 = 0.181818… and 3/11 = 0.272727… . The two repeating digits are 9 times the fraction’s numerator, so 7/11= 0.636363… and 10/11 = 0.909090… (this repeat occurs because 9 × 11 = 99). 1/7 = 0.142857… (and 142857 × 7 = 999,999, hence a six-digit repeating string). 2/7 = 0.285714…, the same six digits looping but starting from 2. Putting the other options in numerical order, we predict that 3/7 = 0.428571…, 4/7 = 0.571428…, 5/7 = 0.714285… and 6/7 = 0.857142. The thirteenths have two different strings, based on 1/13 = 0.076923… and 2/13 = 0.153846… . Finding all the ways to rotate them and sorting them in numerical order, we predict that 3/13 = 0.230769… and so on.