本周问题:切割魔方
想象一个3×3×3的立方体(像魔方一样),可以沿着组成大立方体的27个小立方体之间的线将其切割成独立的部分。
如果我们允许一次切割多个部分(就像一张二维平面穿过整个形状),那么最少需要几刀才能将立方体切割成四个任意大小的独立部分?
要将整个立方体切割成27个独立的小立方体,我们可以进行6刀(每个方向上切两刀)。可以确信,即使允许在切割之间移动部分,也不可能用少于6刀完成。
如果我们只能每次对一个部分进行切割——也就是说,每次取一个部分并进行一次完全穿过它的切割——最少需要几刀才能将整个立方体分割成27个独立的小立方体?
(来源:New Scientist,BrainTwister #35)
原文:
Imagine a 3×3×3 cube (like a Rubik’s cube) that can be cut into separate pieces along the lines between the 27 individual small cubes that make up the larger shape.
If we are allowed to cut through more than one piece of the whole cube at once (as if passing a 2D plane through the whole shape), what is the fewest number of cuts we need to create four separate pieces of any size?
To cut the whole cube up into its 27 individual small cubes, we can make six cuts (two in each of the three directions). Convince yourself that this can’t be done in fewer than six, even if we are allowed to move pieces between cuts.
If, instead, you are only allowed to make cuts to one piece at a time – that is, taking one of the pieces each time and making a single cut that goes all the way through it – what is the fewest number of cuts you will need to separate the whole cube into its 27 individual cubes?
上期答案:连续的平方
如果 a² + b² = c²,并且 a、b 和 c 是三个连续的正整数,a 的值是多少?(你可能知道有一个著名的定理适用于这种情况。)
如果 d² + e² + f² = g² + h²,其中 d、e、f、g 和 h 是五个连续的正整数,d 的值是多少?
之后的两个序列分别有七个和九个连续的正整数,它们分别以 21 和 36 开始。你注意到了这些起始数字的什么特点?
再下一个序列将使用 11 个数字。第一个数字是什么?
答案:
在著名的3² + 4² = 5²的毕达哥拉斯三元组之后,下一个序列是10² + 11² + 12² = 13² + 14²,因此d的值为10。起始数字遵循这样的模式:1×3,2×5,3×7,4×9。它们都是三角数,跳过了每隔一个的数(1+2,1+2+3+4,1+2+3+4+5+6)。
第五个序列由11个数字组成,起始数字是5×11 = 55,即:55² + 56² + 57² + 58² + 59² + 60² = 61² + 62² + 63² + 64² + 65²。
原文
After the famous 3^2 + 4^2 = 5^2 Pythagorean triple, the next sequence is 10^2 + 11^2 + 12^2 = 13^2 + 14^2, so the value of d is 10. The starting numbers follow the pattern 1×3, 2×5, 3×7, 4×9. They are all triangular numbers, skipping every second one (1+2, 1+2+3+4, 1+2+3+4+5+6).
The fifth sequence, of 11 numbers, starts with 5×11 = 55, that is: 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2+ 65^2.