每周一题:圈出顺序

文摘   2024-10-03 08:16   加拿大  

本周问题:圈出顺序

如果我们按顺序将数字1到4写成3, 1, 4, 2,然后划掉1,剩下的序列为3,4,2。它从中间大小的数字开始,接着是最大的数字,最后是最小的数字。(如果我们划掉的是其他数字,这种情况就不会成立。)

找到1到4的一个排列顺序,使得无论划掉哪个数字(除了1),剩下的序列总是按照“中间-最大-最小”的顺序排列。

如果我们将数字1到5写下来(以任意顺序),你需要划掉两个数字,才能留下一个三个数字的序列(这三个数字可以是任意顺序,不一定是“中间-最大-最小”)。有多少种不同的划法可以做到这一点?

找到1到5的一个排列顺序,使得超过一半的划掉两个数字的方法,留下的序列都按“中间-最大-最小”的顺序排列。(这里有三种可能的序列。)

(来源:New Scientist,BrainTwister #32)

原文:

If we write the numbers 1 to 4 down in the order 3, 1, 4, 2 and then cross out the 1, the remaining sequence starts with the middle number out of the ones that are left, followed by the largest and then the smallest. (If we had crossed out a different number instead, this wouldn’t be true.)

Find the order for the numbers 1 to 4 where crossing out any single number except the 1 always leaves the remaining sequence in middle-largest-smallest order.

If we write down the numbers 1 to 5 (in any order), you would have to cross out two numbers to leave a sequence of three (these can also be in any order, not necessarily middle-largest-smallest). How many different ways can you do this?

Find an order for the numbers 1 to 5 where more than half of the ways of crossing out two numbers leave the remaining sequence in middle-largest-smallest order. (There are three possible sequences.)


上期答案:折再剪

想象一张竖版(或垂直)方向的纸。如果你想让这个谜题更具挑战性,这张假想的纸就足够了,否则你也可以用一张真实的纸试试。

如果你将纸对折两次(先上下折,再左右折),然后从每个角剪掉一小块,你会在纸上剪出多少个洞?

如果你先折三次(先上下折,再左右折,然后再上下折),然后再剪掉角上的小块呢?这时会有多少个洞?

折叠次数和剪出的洞的数量之间是否有关系?

答案:

对于两次折叠,将在中心产生一个孔(其他切口不会形成真正的孔,只会在页面边缘产生缺口)。对于三次折叠,将产生三个孔(一个在中心,另一个在中心线的上方,第三个在下方)。当我们将折叠次数增加到4、5、6和7次时,页面上将分别产生9、21、49和105个孔。

如果水平折叠次数为H,垂直折叠次数为V,那么你会得到一个(2H-1)× (2V-1)的折痕网格(因为每次折叠都会使该方向的折痕数量加倍,而我们减去1,因为我们不计算边缘上的孔)。例如,折叠5次时,我们将垂直折叠三次,水平折叠两次(顺序为VHVHV),这样一来,一个方向上将有2³-1=7条折痕,另一个方向上有2²-1=3条折痕,折痕的交点数为3 × 7 = 21。

原文:

For two folds, there will be one hole (in the centre – the other cuts won’t make true holes, just notches on the page edge). For three folds, there will be three holes (one in the centre, plus one above it and one below it along the centre line). As we increase the number of folds to 4, 5, 6 and 7 we get 9, 21, 49 and 105 holes in the page.

If the number of horizontal folds is H and the number of vertical folds is V, you make a grid of creases measuring 2H – 1 by 2V – 1 (since each fold doubles the number of creases in that direction, and we subtract one as we don’t count holes on the edge). For example, with 5 folds, we will have folded in half vertically three times and horizontally twice (in the order VHVHV), making 23 – 1 = 7 lines one way and 22 – 1 = 3 the other, with 3 × 7 = 21 intersections.


大老李聊数学
“大老李聊数学”(喜马拉雅FM自媒体节目)粉丝公众号,不定期发布节目相关知识,讨论各类趣味数学问题。
 最新文章