江南大学陈坚院士团队和贵州茅台集团联合发表关于大曲发酵的研究成果

学术   2024-12-01 10:11   上海  

江南大学陈坚院士团队和贵州茅台集团联合发表关于大曲发酵的研究成果

近日,江南大学陈坚院士团队和贵州茅台集团联合在国际食品期刊《Food Bioscience》发表了题为“Cooperative interaction between Pediococcus and Bacillus communities as a key factor in the high-temperature Thermal differentiation of Daqu”的研究论文。Huabin Tu为第一作者,江南大学陈坚院士和茅台集团Li Wang为共同通讯作者。

大曲要经历三个发酵阶段,第一个阶段的温度能达到 60 至 65 摄氏度。这种高温是酱香型白酒高温大曲最为显著的特征和关键评价指标之一,对其独特的烤香形成起到了重要作用。高温大曲的发酵温度源于微生物群落所产生的代谢热;此外,温度是大曲群落自组装的一个关键因素。在大曲发酵过程中,不同生境中微生物群落之间的相互作用会导致产生不同的代谢热,进而产生不同的发酵结果。高温大曲的发酵一般是在全封闭的发酵车间进行的;因此,这个过程无法完全被控制,会出现温度波动和差异,从而影响产品的质量和稳定性。所以,在相同的初始条件(环境、原料等)下,仅仅由于群落相互作用而导致的大曲温度差异的原因,对于管理大曲生产至关重要。

在持续的热应激环境下,微生物之间的相互作用对于维持产热至关重要。根据不同的条件,微生物会发生几种不同的相互作用,比如竞争、拮抗和共生。共生关系是物种之间积极的双向相互作用;合作共生通常不如竞争和拮抗那么常见。然而,由外部环境因素引起的非生物胁迫能够促进微生物群落之间积极关系的形成,互补细菌之间通过代谢交换产生合作。物种间的合作关系增强了微生物群落的恢复能力和韧性,使其能够应对各种非生物胁迫,如干旱、化学胁迫和抗生素胁迫,从而扩大了一个群落的适应范围。

然而,由于对导致微生物温度升高和产热的关键因素缺乏了解,阻碍了在发酵过程中对产热过程的有效控制。优势菌属Pediococcus的微生物可能会介导这一过程;然而,它们的丰度与在高温大曲高温环境下所观察到的低产热情况相矛盾,这表明大曲微生物群落可能作为一个整体形成了一种适应性更强的新表型。在典型的固态发酵过程中,持续的高温环境会促进积极的相互作用,并刺激核心微生物的生长。

本研究利用实时温度监测、绝对定量扩增子测序和微量热分析的结果,对微生物的合作与竞争在大曲发酵过程中驱动温度差异中的作用进行了探究。据观察,菌属片PediococcusBacillus之间的平衡相互作用是实现高发酵温度的一个关键因素。结果表明,发酵初期的特点是存在竞争和生态位分化,并且随着发酵的进行,高温大曲的微生物群落往往会趋向于合作。相关性网络分析显示,在发酵第 4 天,PediococcusBacillus形成了不同的聚类,每个聚类内部呈正相关,而它们之间则呈显著负相关。相互作用及凝聚指数分析表明,这两个属在大曲的高温发酵过程中都起着至关重要的作用。此外,模拟发酵实验证实,与PediococcusBacillus菌属单独占主导的情况相比,PediococcusBacillus共存能够在高温环境下增强产热。这些研究结果凸显了微生物群落相互作用在调控发酵温度方面的重要性,为优化大曲发酵产品的质量和稳定性提供了宝贵的见解。

Fig. 1. Temperature Differentiation and Indicator Changes in High-Temperature Daqu During Fermentation. (a) Temperature profiles of high-temperature Daqu throughout the fermentation process as monitored by embedded thermometers. Data are presented as the mean with a 95% confidence interval. (b) Temperature differentiation in high-temperature Daqu, categorized by the maximum temperature reached during fermentation (HT: ≥60 °C; MT: 50–60 °C; LT: ≤50 °C). Data are expressed as the mean with a 95% confidence interval. (c, d, e, f) Differences in (c) acidity, (d) sugar, (e) moisture, and (f) starch in HT, MT and LT Daqu groups.

Fig. 2. Changes in Microbial Structure and Correlation with Temperature During High-Temperature Daqu Fermentation. (a, b) Differences in composition of (a) bacterial and (b) fungal communities obtained by PCoA. Samples were divided into five groups according to fermentation time, as represented by blue, red, light green, purple, and green circles. (c, d) Absolute quantification of (c) bacteria and (d) fungi in different temperature groups during a single Daqu fermentation cycle. (e, f) Linear regression of (e) total bacterial count and (f) Pediococcus count against temperature during fermentation, with a 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Biodiversity during High-Temperature Daqu Fermentation. (a, b) Changes in Chao1, Shannon, Simpson diversity index for (a) bacteria and (b) fungi throughout the fermentation process. Group comparisons were performed using a t-test. ∗p < 0.05; ∗∗p < 0.01.

Fig. 4. Correlation Network and Cohesion Analysis of High-Temperature Daqu Fermentation. (a, b) Correlations between (a) total bacteria and (b) top 20 dominant bacterial species in terms of abundance at key nodes during the primary fermentation of high-temperature Daqu, as categorized by interaction. (c, d) Calculation of (c) positive cohesion and (d) negative cohesion within the bacterial community during the primary fermentation of Daqu. Group comparisons were performed using a t-test. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.005.

Fig. 5. Core Microorganisms and Their Role in Temperature Differentiation in Daqu. (a) Analysis of bacterial differences in Daqu on days 4–6. (b) Screening criteria for key microorganisms during primary fermentation of high-temperature Daqu, including bacteria with the highest absolute abundance on days 4 and 6, top 20 bacteria with the highest node degree in the correlation network on day 4, and bacteria with higher positive cohesion and lower negative cohesion in the HT group on day 6. (c) Bacterial correlation network in different temperature groups on day 6, with colors indicating the two clustering groups in Fig. 4, with Bacillus and Pediococcus highlighted. (d) Linear regression of the maximum ratio of the absolute content of Pediococcus to Bacillus, with RBacillus:Pediococcus = Pediococcus:Bacillus if Pediococcus is more abundant, and RBacillus:Pediococcus = Bacillus:Pediococcus if Bacillus is more abundant, relative to the fermentation temperature of high-temperature Daqu, with a 95% confidence interval. (e) Temperature differentiation in high-temperature Daqu based on the absolute content ratio of Pediococcus to Bacillus. Data are expressed as mean values with a 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Heat Production of Pediococcus and Bacillus Strains at Various Temperatures. (a) Heat production power of two Pediococcus and four Bacillus strains at 25 °C. (b) Heat production power of two Pediococcus and four Bacillus strains at 37 °C. (c) Heat production power of two Pediococcus and four Bacillus strains at 45 °C. (d) Total heat production of six strains consisting of Pediococcus and Bacillus at 25 °C. (e) Total heat production of six strains consisting of Pediococcus and Bacillus at 37 °C. (f) Total heat production of six strains consisting of Pediococcus and Bacillus at 45 °C. Data are presented as averages.

Fig. 7. Thermogenic Power of Pediococcus and Bacillus Mixed Cultures Under Simulated Solid-state Fermentation Conditions. (a) Heat production power and total heat production of mixed Pediococcus and Bacillus cultures at 25 °C. (b) Heat production power and total heat production of mixed Pediococcus and Bacillus cultures at 45 °C. Data are expressed as averages.

原文链接

https://doi.org/10.1016/j.fbio.2024.105457



食品放大镜 | 不同领域研究成果

(请点击标题查看)

胶体、乳液及递送系统 多糖、纤维、低聚糖等 脂质

食物蛋白、肽与氨基酸 多酚类化合物 淀粉

食品包装与货架期 食品安全与质量控制 凝胶

食品营养与人类健康 食品检测与分析   蜂产品

食品相关合成 人造肉 食品风味 益生元、益生菌及合生元

3D和4D打印 食物过敏 食品感官科学与分析

黄酮类化合物 农产品贮藏与加工  

肉与肉制品 蛋与蛋制品 水产品 奶及奶制品 

豆及豆制品 果蔬及果蔬制品 大米及米制品 食用菌

炎症性肠病 糖尿病 肝病 神经疾病



食品放大镜 | 大杂烩

(请点击标题查看)

食品大事件 食品基金项目 食品奖项 人物访谈及报道

 封面文章 顶刊综述 高被引论文 CNS期刊论文

期刊征稿 期刊资讯 会议通知 学科动态

博士招生 硕士招生 考研调剂 夏令营

食品科普 食品相关书籍 竞赛 

优秀博士硕士论文



食品放大镜 | 学者研究成果

(请点击学者姓名查看)

薛长湖院士 金征宇院士 谢明勇院士 陈卫院士

 孙宝国院士 陈坚院士 孙大文院士 朱蓓薇院士

刘仲华院士

 周光宏教授 江连洲教授 陈峰教授 聂少平教授

 赵谋明教授 赵国华教授 李斌教授 王书军教授
  刘学波教授 唐传核教授 张慜教授 谢建华教授
 陈卫教授 谭明乾教授  张宇昊教授 王静教授
 徐岩教授 李春保教授 孔保华教授 陈士国教授
王兴国教授 高彦祥教授 黄强教授 方亚鹏教授 汪勇教授
李媛教授 刘志刚教授 曾晓雄教授 汪少芸教授

  姜微波教授 刘夫国教授 王强研究员 白卫滨教授

 高振鹏教授  易俊洁教授 甘人友副研究员 李进伟教授
 陈启和教授 赵新淮教授 王仲孚教授 杜明教授
张名位研究员 侯俊财教授 徐宝才研究员 秦文教授
David Julian McClements教授  王建龙教授
李杨教授 陈雪峰、龚频团队 许恒毅教授 陆颖健教授
李锦铨教 刘俊教授 李晓东教授 丁郁教授 范俊峰教授
 倪莉教授 章宝教授 陈廷涛教授 刘元法教授
 张红印教授 盛占武研究员 姜瞻梅教授
张德权研究员 齐向辉教 郑家荣教授 陈翊平教授
魏新林教授 肖安风教授 吴彩娥教授 姜毓君教授
宛晓春教授 魏子淏教授 龚金炎教授  徐鑫教授

周存山教授 楚强研究员 高鸿教授 秦磊教授

许正宏教授 吴继红教授 钟恬助理教授 毕金峰研究员

刘龙教授 王凤忠研究员 郭顺堂教授 周景文教授

吴贺君副教授 刘锴栋教授 邓乾春研究员 钟芳教授 

白艳红教授 夏小乐教授 张英华教授 游丽君教授

任晓锋教授 汤晓智教授 孙培龙教授 邵平教授

盛军、田洋团队 张娟教授 陈小强教授 
刘建华教授 林松毅教授 陈海霞教授 徐志祥教授 
刘贵珊教授 启航教授 张春晖研究员 寇莉萍副教授
杨兴斌教授 古绍彬教授 冯翠萍教授



在线投稿平台链接https://www.wjx.top/jq/85151447.aspx



声明

标注‘原创’仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,并不意味着代表本平台观点或证实其内容的真实性;转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请联系本平台删除。由于编译水平有限,推文或简历有不妥之处,深感抱歉,请联系本平台修改或者删除。

食品放大镜
分享食品及相关行业的新闻和科研动态、行业会议等信息,挖掘食品及交叉领域的新思路、新方法和新进展
 最新文章