第一作者:Zihao Wan
通讯作者:Xuerui Yang
通讯单位:华东理工大学资源与环境工程学院
DOI:10.1016/j.seppur.2024.129662
在基于硫酸根的高级氧化工艺(SR-AOPs)领域,催化剂的疏水表面特性通常被忽视,但它在提高催化剂在实际废水处理中的适用性方面具有巨大潜力。疏水性和活化活性之间的矛盾给开发异相氧化技术带来了巨大挑战。为了克服这种限制,本文采用不同的表面活性剂来调节 CoCu 层状双氢氧化物(LDH)的表面性质,以活化过一硫酸盐(PMS)。结果表明,与十二烷基硫酸钠(SDS)和月桂酸钠(SLA)相比,十二烷基磺酸钠(SDSO)调节的 LDH(SDSO-LDH)能最有效地将有机阴离子插入层间空间,同时显示出高效的 PMS 活化能力和疏水性。SDSO-LDH/PMS 系统对各种新出现的污染物(ECs)具有优异的降解性能,Co(IV) = O 和 SO4 -- 物种被确定为主要的氧化中间体。密度泛函理论(DFT)计算进一步证实了这些反应在热力学上的可行性。此外,SDSO-LDH 还能有效降解现实废水中的固有有机物,并具有持续的疏水性,因此是 SR-AOPs 的一种具有竞争力的候选催化剂。活化活性和疏水性之间的协同作用为 SR-AOPs 在废水处理中的应用提供了一个新的视角。
Fig. 1. (a) Schematic illustration of the synthesis process; (b) XRD patterns; (c) FTIR spectra; (d) TG curves; (e) DTG curves; (f) N2 adsorption/desorption isotherms and pore size distribution; (g) Zeta potential of CoCu-LDH, SDS-LDH, SDSO-LDH and SLA-LDH.
Fig. 2. (a) FESEM images; (b)HRTEM and SAED images; (c) EDS mapping of SDS-LDH (Subscript 1), SDSO-LDH (Subscript 2), and SLA-LDH (Subscript 3).
Fig. 3. (a) Contact angle images with water droplets; (b) dispersion in water of CoCu-LDH (Subscript 1), SDS-LDH (Subscript 2), SDSO-LDH (Subscript 3), and SLA-LDH (Subscript 4). I, II, III and IV in the lower right corner refer to the different states: in order, after adding the powder, after sonication for 30 min, after vortexing for 3 min and after standing for 10 min.
Fig. 4. (a) PCMX degradation by various systems; (b) Degradation of various ECs in the SDS-LDH/PMS and SDSO-LDH/PMS systems; (c) Comparison of k-values of the advanced catalytic materials for PCMX removal; (d) Effects of coexisting substances and pH on PCMX degradation; Cycling performance of (e) SDS-LDH; (f) SDSO-LDH; (g) Leaching of metal ions after three cycles in SDS-LDH and SDSO-LDH. Experimental conditions: [catalysts] = 30 mg/L, [PMS]0 = 0.4 mM, [contaminations]0 = 100 μM, pH0 = 7.0.
Fig. 5. EPR spectra with the spin-trapping of (a) TEMP; (b) DMPO; (c) DMPO and MeOH; (d) Quenching experiments for the degradation of PCMX; (e) Assessed contribution rates of various ROS in the SDS-LDH/PMS system (Subscript 1), SDSO-LDH/PMS system (Subscript 2), and SLA-LDH-LDH/PMS system (Subscript 3). Experimental conditions: [catalysts] = 30 mg/L, [PMS]0 = 0.4 mM, [PCMX]0 = 100 μM, [quenching agents]0 = 50 mM, pH0 = 7.0.
Fig. 6. (a) EPR spectra with the spin-trapping of DMPO with DMSO quenching; (b) Chromatogram of pure PMSO, PMSO2 and PMSO after degradation; (c) PMSO loss and PMSO2 production; Sum of PMSO and PMSO2 and the corresponding η(PMSO2) in (d) SDS-LDH/PMS system; (e) SDSO-LDH/PMS system; (f) Corresponding steady state concentration of Co(IV) = O species. Experimental conditions: [catalysts] = 75 mg/L, [PMS]0 = 1 mM, [PMSO]0 = 500 μM, pH0 = 7.0.
在本研究中,使用不同的表面活性剂对 CoCu-LDH 进行了表面改性,以赋予其疏水特性。综合表征和结合能计算显示,只有带有磺酸盐基团的 SDSO 才表现出有效的插层作用,与宿主层建立了稳固的相互作用,并保持稳定。在此基础上,SDSO-LDH 同时实现了维持 PMS 活化活性和稳定的疏水性。在催化性能方面,SDSO-LDH/PMS 系统提高了各种水基质中有机污染物的降解和矿化能力。主要的活化机制被确定为通过 SO4--的自由基途径和通过 Co(IV) = O 的非自由基途径,其热力学优越性得到了 DFT 计算的证实。从增强催化表面的机理推断,疏水性 SDSO-LDH 表面产生的氧化中间产物(即 Co(IV) = O 和 SO4--)倾向于扩散到水溶液中,而不是与疏水性表面相互作用,从而增强了污染物的降解能力。简而言之,活化活性与疏水性之间的这种协同作用为提高 SR-AOPs 在各种极性环境下的环境适用性提供了一条大有可为的途径。值得注意的是,只要仔细考虑疏水性改性与预期应用和材料特性的兼容性,该策略有可能扩展到其他复合材料和固有的疏水性材料。
Zihao Wan, Sen Lin, Xuerui Yang, Guangli Xiu, Lei Zhou, Potential application of SDSO-layered double hydroxide in wastewater treatment: Synergy between hydrophobicity and activation activity, Separation and Purification Technology, 2025, https://doi.org/10.1016/j.seppur.2024.129662
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧