孤独症治疗新突破!广州医科大学附属第二医院证实我国自研菌株脆弱拟杆菌BF839有效干预!

文摘   健康   2024-09-05 17:02   广东  
孤独症谱系障碍(autism spectrum disorder,ASD)是一种广泛神经发育障碍性疾病,其主要特点为言语及社交障碍、兴趣狭窄、重复刻板行为等[1]。近年我国ASD患病率逐年上升,患病率达1% [2]。目前以教育康复训练为主的疗效有限,缺乏更有效的治疗方法。


肠道微生物组已被报道可通过菌群-肠-脑轴参与ASD的发病机制[3],影响其胃肠道功能和行为[4,5]。近期,广州医科大学附属第二医院临床营养科开展的一项随机、双盲、安慰剂临床试验发现:采用我国自研菌株脆弱拟杆菌BF839能有效干预自闭症,安全性高,这为广大自闭症患者及家庭带来了曙光。


在这项随机双盲安慰剂对照的试验中,研究团队共招募了2-10岁60名自闭症患者,在不改变两组患者常规康复训练的基础上给予BF839或安慰剂治疗16周。在 0天、第8周和16 周分别进行孤独症行为量表(Autism Behavior Checklist,ABC)、儿童期孤独症评定量表(Childhood Autism Rating Scale,CARS)、社会反应量表(Social responsiveness scale,SRS)、0岁-初中生社会生活能力量表(Normal Development of Social Skills from Infant to Junior High School Children,S-M)、胃肠道症状评定量表(Gastrointestinal symptom rating scale, GSRS)评估以及不良反应监测。同时在第0天、16周收集ASD患者的粪便进行肠道菌群分析。



结果


(一)BF839可显著改善ASD儿童的异常行为及胃肠道症状,尤其是反映刻板行为的运动能力,小于4岁可能是益生菌干预有效的窗口期。


与安慰剂组对比,16周时BF839组可显著改善ABC运动能力评分(-4.68±6.29vs -1.07±5.73, P<0.05)。进一步亚组分析:在小于4岁的ASD儿童中,与安慰剂组对比,16周时BF839组可显著改善ABC运动能力评分(-4.85±4.60 vs 1.50±3.87, P<0.05)。ABC 总分改善也显著高于安慰剂组3倍(−20.23±23.92 vs −6.42±15.96, p=0.106),接近统计学差异;而在4岁以上的孩子中,与安慰剂相比,BF839组改善稍好,但不明显(-11.27 ± 11.74 vs -8.88 ± 14.93,P= 0.623)。


在CARS≥30分的ASD儿童中,与安慰剂组对比,16周时BF839组可显著改善ABC总分(-19.71±24.12 vs -5.05±16.58, P<0.05)、ABC运动能力评分(-5.71±8.26 vs -0.32±5.88, P<0.05)以及CARS评分(-5.57±5.79 vs -2.11±3.70, P<0.05);与安慰剂对比,8周和16周时BF839组可显著改善GSRS评分[8w, -3.50(-7.36,-1.25) vs 0.00(-3.00,3.00), P<0.05; 16w, -3.50(-7.13,-1.25) vs 2.00(-3.00,3.00), P<0.05] 。


(二)安全性高


仅观察到BF839组有2例(6.67%)因轻度腹泻而退出,其余患者未见其他不良反应。


(三)BF839可促进ASD儿童肠内双歧杆菌生长


安慰剂组和BF839组在 0 d时未显示出显著差异丰度,但与安慰剂组16w比较,BF839组干预16w后BF839组16w 假小链双歧杆菌(Bifidobacterium pseudocatenulatum)、长双歧杆菌(Bifidobacterium longum)、两歧双歧杆菌(Bifidobacterium bifidum)丰度显著增加,同时相关的神经活性化合物的代谢功能显著改善。


越来越多的动物研究[6-10]和临床试验[11-21]都报道了单一菌株或复合菌株益生菌可在一定程度上改善ASD行为表现及胃肠道症状,本研究结果提示BF839在改善ASD儿童行为症状方面显示出较为优秀的功效。Zhao的研究显示[18],通过粪菌移植(FMT)2个月后,CARS评分较基线下降了10.8%(对照组仅下降了0.8%,P<0.001),本研究干预16周后,在基线CARS≥30分的ASD儿童中,BF839降低了14.50%(对照组降低了5.93%,P=0.044),本研究结果与FMT疗效相似。


已有研究表明,相较于健康儿童,在ASD患儿中发现双歧杆菌属(Bifidobacterium)[22-24]、韦荣氏球菌属(Veillonella)[25]显著下降。已知某些双歧杆菌可产生γ-氨基丁酸(γ-aminobutyric acid,GABA)[26],因而在ASD患儿中也呈现较低的GABA浓度。GABA与谷氨酸代谢密切相关,谷氨酸代谢是大脑中主要的兴奋性神经递质[27]。一些研究显示,较低的谷氨酸浓度与ASD典型焦虑以及社交和行为障碍的严重程度相关[28-29]。基于此,有人认为GABA/谷氨酸异常可能在ASD病理学中发挥重要作用[28-30]。自闭症儿童也有氨基酸失调的报道[31],新的证据强调了肠道微生物群在氨基酸代谢中的作用。另外,长双歧杆菌NCC3001可通过迷走神经途径使感染性结肠炎小鼠的焦虑样行为和海马脑源性神经营养因子(BDNF)正常化[32]。而本研究发现,与安慰剂组及干预前对比,经BF839干预16w后,假小链双歧杆菌(Bifidobacterium pseudocatenulatum)、长双歧杆菌(Bifidobacterium longum)、两歧双歧杆菌(Bifidobacterium bifidum)丰度显著增加,我们的肠道菌群结果提示BF839可以促进ASD儿童肠道内双歧杆菌的生长,致使一些神经活性化合物的代谢功能显著变化,这可能是BF839能有效改善ASD儿童症状原因之一。


本研究结果对于人类使用肠道微生态制剂治疗神经发育障碍性疾病有重要的实践和理论意义。由于BF839是一个已上市多年的具有中国自主知识产权的人源性肠菌制剂,这一研究成果可以迅速应用于临床。


这一临床研究也证实了前期我们团队[33,34]及国外来自《Cell》[35]的动物实验结果:脆弱拟杆菌可改善孤独症小鼠的部分症状。30%的孤独症孩子合并癫痫发作,而我们前期的临床研究也发现:BF839还可降低癫痫发作,有效治疗难治性和免疫相关性癫痫[36-38],这进一步说明:肠道微生态失衡是神经发育障碍性疾病中共同的发病原因之一,使用有益微生物去纠正孩子的微生态失衡,对孩子有极大的帮助。然而,我们的研究发现:小于4岁可能是微生态制剂干预有效的窗口期。因此我们呼吁,时间就是大脑!早期干预与良好的预后相关!


原文链接:

https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1447059/full




参考文献


[1] 唐婷,朱江,郭敏,赖茜,李圆圆,杨亭,陈洁,李廷玉.孤独症谱系障碍儿童便秘及睡眠问题与情绪行为问题的关系[J].重庆医科大学学报,2020,45(01):85-90.
[2]  殷道根,何珍,段学燕,王庆川,廖小兵,戴娘湖,黄俊芳.中国人群儿童孤独症危险因素的Meta分析[J].中国妇幼保健,2018,33(12):2877-2880.
[3]  Alam, R.; Abdolmaleky, H.M.; Zhou, J.-R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med Genet. Part B: Neuropsychiatr. Genet. 2017, 174, 651–660.
[4]  Fung, T.C.; A Olson, C.; Hsiao, T.C.F.C.A.O.E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017, 20, 145–155.
[5]  Kong, X.; Liu, J.; Cetinbas, M.; Sadreyev, R.; Koh, M.; Huang, H.; Adeseye, A.; He, P.; Zhu, J.; Russell, H.; et al. New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutr. 2019, 11, 2128.
[6]  Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders[J]. Brain Behavior & Immunity, 2018.
[7]  Hsiao E , Mcbride S , Hsien S , et al. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders[J]. Cell, 2013, 155(7):1451-1463.
[8]  Wang, X.; Yang, J.; Zhang, H.; Yu, J.; Yao, Z. Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice.Autism Res. 2019, 12, 576–588.
[9]  El-Ansary, A.; Bacha ABen Bjørklund, G.; Al-Orf, N.; Bhat, R.S.; Moubayed, N.; Abed, K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab. Brain Dis. 2018, 33, 1155–1164.
[10]  Goo N, Bae HJ, Park K, et al. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice[J].Life Sci, 2020, 262: 118497.
[11]  Liu YW, Liong MT, Chung YE, Huang HY, Peng WS, Cheng YF, Lin YS, Wu YY, Tsai YC. Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2019 Apr 11;11(4):820.
[12]  Kong XJ, Liu J, Liu K, Koh M, Sherman H, Liu S, Tian R, Sukijthamapan P, Wang J, Fong M, Xu L, Clairmont C, Jeong MS, Li A, Lopes M, Hagan V, Dutton T, Chan SP, Lee H, Kendall A, Kwong K, Song Y. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients. 2021 May 5;13(5):1552.
[13]  李玉勤,孙映红,梁亚鹏,周凡,杨洁,金胜利.益生菌联合应用行为分析法治疗儿童孤独症谱系障碍的前瞻性随机对照研究[J].中国当代儿科杂志,2021,23(11):1103-1110.
[14]  Parracho HMRT, Gibson GR, Knott F, Bosscher D, Kleerebezem M,McCartney AL. A double blind, placebo-controlled, crossover-designedprobiotic feeding study in children diagnosed with autisticspectrum disorders. International Journal of Probiotics and Prebiotics.2010, 5:69–74.
[15]  Wang Y, Li N, Yang JJ, Zhao DM, Chen B, Zhang GQ, Chen S, Cao RF, Yu H, Zhao CY, Zhao L, Ge YS, Liu Y, Zhang LH, Hu W, Zhang L, Gai ZT. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol Res. 2020 , 157:104784
[16]  Arnold LE, Luna RA, Williams K, Chan J, Parker RA, Wu Q, Hollway JA, Jeffs A, Lu F, Coury DL, Hayes C, Savidge T. Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial. J Child Adolesc Psychopharmacol. 2019, 29(9):659-669.
[17]  Sanctuary MR, Kain JN, Chen SY, Kalanetra K, Lemay DG, Rose DR, Yang HT, Tancredi DJ, German JB, Slupsky CM, Ashwood P, Mills DA, Smilowitz JT, Angkustsiri K. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One. 2019, 14(1):e0210064.
[18]  Zhao H, Gao X, Xi L, et al. Mo1667 fecal microbiota transplantation for children with autism spectrum disorder[J]. Gastrointestinal Endoscopy, 2019, 89(6):AB512-AB513.
[19]  Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K,Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.
[20]  Kaluzna-Czaplinska J, Blaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition. 2012, 28:124–6.
[21]  Adams JB,Johansen LJ,Powell LD,et al. Gastrointestinal floraand gastrointestinal status in children with autism-comparisonsto typical children and correlation with autism severity[J].BMC Gastroenterol.2011,11(10):22-13.
[22]  Kang, D. W. et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017 Jan 23;5(1):10.
[23]  Wang, L. et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011 Sep;77(18):6718-21.
[24]  Liu F, et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry. 2019 Jan 29;9(1):43.
[25]  Strati F, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017 Feb 22;5(1):24.)
[26]  Srikantha P., Hasan Mohajeri M. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci. 2019;20:2115.
[27]  Shen J. Modeling the glutamate-glutamine neurotransmitter cycle. Front. Neuroenergetics. 2013;5:1.
[28]  Horder J., Petrinovic M.M., Mendez M.A., Bruns A., Takumi T., Spooren W., Barker G.J., Künnecke B., Murphy D.G. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry. 2018;8:106.
[29]  Wieronska J.M., Stachowicz K., Nowak G., Pilc A. The Loss of Glutamate-GABA Harmony in Anxiety Disorders. In: Kalinin V., editor. Anxiety Disorders. InTech; London, UK: 2011.
[30]  Perna S., Alalwan T.A., Alaali Z., Alnashaba T., Gasparri C., Infantino V., Riva A., Petrangolini G., Allegrini P., Rondanelli M. The role of glutamine in the complex interaction between gut microbiota and health: A narrative review. Int. J. Mol. Sci. 2019;20:5232.
[31]  Smith A.M., King J.J., West P.R., Ludwig M.A., Donley E.L.R., Burrier R.E., Amaral D.G. Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biol. Psychiatry. 2019;85:345–354.
[32]  Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011 Dec;23(12):1132-9.
[33]  林楚慧、曾婷、林健泓,肖枫,段现来,陈盛强,邓宇虹,脆弱拟杆菌BF839可改善Fmr1 KO 小鼠的学习记忆及社交新奇偏好能力,中华神经医学杂志,2022,21(4):341-347
[34]  曾婷,林楚慧,邓宇虹,陈盛强等 脆弱拟杆菌 BF839可改善Fmr1 KO小鼠在不同环境下的焦虑和多动行为,中华生物医学工程杂志,2024:404-408
[35]  Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota
modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. (2013) 155:1451–63
[36]   邓宇虹,林楚慧,操德智.脆弱拟杆菌(BF839)辅助治疗难治性癫痫有效性的初步临床研究. 癫痫杂志 2021. 7( 4):288-295
[37]  林楚慧、曾婷、吴倩仪、操德智、邓宇虹,脆弱拟杆菌BF839治疗新诊断“可能的自身免疫相关性癫痫”的疗效,癫痫杂志,2022,8(4):298-304
[38]  Chuhui Lin,Improvement of epilepsy secondary to acquired immunodeficiency syndrome with intestinal microbiota preparations: a case report, Acta Epileptologica ,2024:137-142



营养肠道微生态技术案例公众号:


广州医科大学附属第二医院 临床营养科

国家临床营养科建设示范单位
(核心技术方向)
 营养肠道微生态专科联盟 

近年来,营养结合肠道微生态的技术在临床上越来越得到重视,各种治疗性膳食模式(如生酮饮食、低碳饮食、低蛋白饮食、低嘌呤饮食、低热量饮食、抗癌膳食等)在临床上广为应用,取得了较好的效果。而肠道微生态更是大大提高了营养科的治疗效果,二者的结合在神经系统疾病、肿瘤性疾病、自身免疫性疾病、代谢性疾病中都取得了肯定的疗效,而且营养膳食模式是以自然食物为主,肠道微生态(如不同菌株的益生菌、益生元、后生元等)均是能获得国家批准上市的膳食食品。


该技术安全可靠,没有严重的副作用,是未来临床营养科的新技术。


联盟单位

广州医科大学附属第二医院
惠州市第一人民医院
营养肠道微生态专科善心健康基地
源羲和营养肠道微生态专科基地
沈阳典亮未来生命科学有限公司
吉林省环健营养健康咨询有限公司
长沙市中心医院
上海德济医院
......


有志加入营养肠道微生态专科联盟单位,欢迎扫码咨询

END

点分享
点收藏
点点赞
点在看

 最新文章