1 前言
2.1 样品的选择与预处理样品的选择应明确所进行研究的目的,通常选择的样品还要有代表性,考虑采样季节,贮藏条件、加工方式等。采集样品中香气和香味成分前,需要将被研究的样品进行预处理(除非是粘度低的液体),预处理包括下列工序:研磨、均化、离心、过滤或挤压。固体样品可以和水进行均化,制成浆状物,在样品进行预处理时,应避免热、光或空气的氧化,以及由于细胞结构的破坏而发生的酶与前驱体的作用,通常采取的措施是在CO2或N2气流中捣碎样品,在均化前将酶钝化或在均化后立即钝化,如水果的均化,Drawert等[1]人曾建议在甲醇存在下进行,预处理的样品宜放入密封的充满N2的瓶中,在-20℃下保存直到使用。
图1 溶剂辅助风味蒸发萃取(SAFE)示意图
饱吸了花香和食品、化妆品香气的吸附剂,还需要进行脱附,脱附时以不损害娇嫩的花香或产品香气为原则。如用溶剂解吸,一般常用沸点较低,易挥发的乙醚和戊烷等。另外,有专门的热脱附装置可购买,微波加热吹气脱法也有报道[7]。最近还有人利用超临界CO2作解脱剂,如用疏水性活性炭饱吸了茉莉头香后,用超临界CO2解吸,获得天然逼真的茉莉头香精油。吹扫捕集技术常被用来研究牛奶和其他奶产品中的芳香化合物。Valero等人[8]对比了两种动态顶空技术分析奶酪中挥发性成分的实验结果。一种是使用自动吹扫捕集仪-气相色谱-质谱在线分析样品,用Carbopack-B60/80吸附,然后在-100℃冷阱中富集;另一种是手动的动态顶空技术,用填充了100mgTenaxTA的不锈钢柱捕集。这两种方法前者比后者灵敏度高,相对标准偏差小,但后者的测量范围宽。由于石榴汁在低温储存时易变坏失去香味,Yen等人用吹扫捕集技术研究了在加压、加热和储存过程中石榴汁的挥发性香味剂的变化。Silva等人则用吹扫捕集技术评价了草莓的香味成分的变化,定量测定了草莓中的93种化合物,其中21种是首次测得。VanRuth等人用吹扫捕集-气相色谱火焰离子化检测研究了用水浸泡后的法国菜豆中芳香化合物的释放时间。对于某些新鲜香料原材料成分食品香味的挥发性成分具有强扩散性,常采用冷阱捕集模式,又称冷阱法(Coldtrap)进行收集。此法的特点是采用冷冻或深度冷冻方法,捕集芳香物质顶空或溶液中的挥发性香成分,并用N2气体载气将其带入冷捕器中进行冷凝,可获得几乎与天然一致的香精油,对于含挥发性香成分的水溶液,可适当加热,以助挥发,所得含水产品,还可再次通过冷阱法或吸附法加以浓缩,所用的冷冻剂包括干冰、液N2或冰盐(冰拌食盐)等。例如,邢其毅等人[9]在研究荔枝香气化学成分时即采用冷阱法。在一容器内装入5kg去皮的新鲜荔枝果肉,连接3个冷阱,分别将它们放入冰水浴、冰盐浴及-60℃低温浴中,最后接上一抽样泵。6~7h后,在冰水浴和冰盐浴中共收集到约3mL荔枝头香溶液,在低温浴中收集到2mL左右的荔枝头香水溶液,共5mL,将其通过XAD-2树脂进行富集,脱附,K-D浓缩,得100μL样品,供色谱分析用。如上所述,采集样品香味成分的方法较多,必须依照分析的目的,试样的特性(热稳定性、粘度、香味成分含量等)加以选择,并适当变化和运用。很多情况下,用“同时蒸馏—萃取”或“溶剂萃取”或“冷阱捕集头香”等几种方法采集香成分时,分析结果不是重叠的,说明在香精香料分析中,应有几种采集方法,很有必要。如果单独使用任何一种采集方法,都难以获得比较完整的成分结果。
进展对于采集所得的香气成分浓缩物的再分离、鉴定、通常用色谱法,它包括GC(气相色谱)、TLC(薄层色谱)和HPLC(高压液相色谱),以GC最为常用。最先是利用填充柱色谱来分离香味成分,但最近改用玻璃毛细管及石英毛细管以后,大幅度提高了香料分析的技术水平。另外还有能耐400℃以上高温的毛细管柱出现,可用来分析更高沸点的成分,GC的检测器有热导池检测器(TCD),现大多数采用火焰离子化检测器(FID),焰光光谱检测器(FPD),TCD、FID、FPD、FTD的检出限量分别为100、0.1、0.01、0.01ng,最近原子发光检测器(AED)开始运用于香气分析,此法最具有应用前景。气相色谱仪除检测通常的含C、H、O化合物外,配合不同的检测器,可检测其它元素的化合物,如FPD(S、P原子)、HECD(S、N、卤素原子)、TSD(N原子)、NPD(N、P原子)、ECD(卤素原子)等,可用于食品中杂环香料成分的检测。气相色谱和质谱(GC/MS)联用方法的出现,使质谱在香料成分研究领域的应用大大增加。现在有了计算机化的GC/MS系统,就可以对所有GC流出峰进行MS分析,并把所有的质谱信息贮存在计算机内,用这样的设备只需很短时间就可以把一个复杂的混合物分析完毕。对GC、HPLC分离法配合傅里叶红外光谱(如GC/FI-IR),以及使用二维核磁共振谱(1H-1HNMR、1H-13CNMR),也是当今香料成分分析中常用的方法。特别是近几年超临界流体色谱(SFC)的发展,使样品中挥发性成分和非挥发性成分的分析同时进行。