文献清单:“降水预测”方向 | MDPI Water

文摘   2024-12-27 08:12   北京  

点击左上角“MDPI环境与地球科学”关注我们,为您推送更多最新研究。


Water 期刊

现在

给您发来一份文献清单!


降水预测在提高气象预报精度、灾害预警、农业生产指导、水资源管理、环境监测以及城市规划和建设等方面都具有重要的意义。


这份“降水预测”方向的文献清单,可以为您提供相关研究的灵感!


1


Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms

利用机器学习算法改进西南亚地区月和季节多模式集合降水预报

识别二维码

免费阅读英文原文

Pakdaman, M.; Babaeian, I.; Bouwer, L.M. Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms. Water 2022, 14, 2632. 


2


A WRF/WRF-Hydro Coupled Forecasting System with Real-Time Precipitation–Runoff Updating Based on 3Dvar Data Assimilation and Deep Learning

基于3Dvar数据同化和深度学习的实时降水-径流更新的WRF/WRF-Hydro水文耦合预报系统

识别二维码

免费阅读英文原文

Liu, Y.; Liu, J.; Li, C.; Liu, L.; Wang, Y. A WRF/WRF-Hydro Coupled Forecasting System with Real-Time Precipitation–Runoff Updating Based on 3Dvar Data Assimilation and Deep Learning. Water 2023, 15, 1716. 


3


Spatio-Temporal Characteristics and Trend Prediction of Extreme Precipitation—Taking the Dongjiang River Basin as an Example

极端降水时空特征及趋势预测——以东江流域为例

识别二维码

免费阅读英文原文

Li, N.; Chen, X.; Qiu, J.; Li, W.; Zhao, B. Spatio-Temporal Characteristics and Trend Prediction of Extreme Precipitation—Taking the Dongjiang River Basin as an Example. Water 2023, 15, 2171. 


4


A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations

一种具有物理解释的月极端降水预报方法

识别二维码

免费阅读英文原文

Yang, B.; Chen, L.; Singh, V.P.; Yi, B.; Leng, Z.; Zheng, J.; Song, Q. A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations. Water 2023, 15, 1545.


5


Rainfall Prediction Rate in Saudi Arabia Using Improved Machine Learning Techniques

利用改进的机器学习技术对沙特阿拉伯降雨量进行预测

识别二维码

免费阅读英文原文

Baljon, M.; Sharma, S.K. Rainfall Prediction Rate in Saudi Arabia Using Improved Machine Learning Techniques. Water 2023, 15, 826. 


6


Projections of Mean and Extreme Precipitation Using the CMIP6 Model: A Study of the Yangtze River Basin in China

使用CMIP6模型预测平均降水量和极端降水量:中国长江流域的研究

识别二维码

免费阅读英文原文

Zhu, C.; Yue, Q.; Huang, J. Projections of Mean and Extreme Precipitation Using the CMIP6 Model: A Study of the Yangtze River Basin in China. Water 2023, 15, 3043.


7


Assessing the Forecasting Accuracy of a Modified Grey Self-Memory Precipitation Model Considering Scale Effects

考虑尺度效应改进灰色自记忆降水模型的预报准确性评估

识别二维码

免费阅读英文原文

Meng, F.; Sun, Z.; Yang, L.; Yu, K.; Wang, Z. Assessing the Forecasting Accuracy of a Modified Grey Self-MemoryPrecipitation Model Considering Scale Effects. Water 202214,1647. 


8


Trends and Drivers of Flood Occurrence in Germany: A Time Series Analysis of Temperature, Precipitation, and River Discharge

德国洪水发生的趋势和驱动因素:温度、降水和河流流量的时间序列分析

识别二维码

免费阅读英文原文

Alobid, M.; Chellai, F.; Szűcs, I. Trends and Drivers of Flood Occurrence in Germany: A Time Series Analysis of Temperature, Precipitation, and River Discharge. Water 2024, 16, 2589.


9


Combined Forecasting Model of Precipitation Based on the CEEMD-ELM-FFOA Coupling Model

基于CEEMD-ELM-FFOA耦合模型的降水组合预测模型

识别二维码

免费阅读英文原文

Zhang, X.; Wu, X. Combined Forecasting Model of Precipitation Based on the CEEMD-ELM-FFOA Coupling Model. Water 2023, 15, 1485. 


10


Development of Monthly Scale Precipitation-Forecasting Model for Indian Subcontinent using Wavelet-Based Deep Learning Approach

基于小波深度学习方法的印度次大陆月尺度降水预测模型的开发

识别二维码

免费阅读英文原文

Yeditha, P.K.; Anusha, G.S.; Nandikanti, S.S.S.; Rathinasamy, M. Development of Monthly Scale Precipitation-Forecasting Model for Indian Subcontinent using Wavelet-Based Deep Learning Approach. Water 2023, 15, 3244. 


11


RLNformer: A Rainfall Levels Nowcasting Model Based on Conv1D_Transformer for the Northern Xinjiang Area of China

RLNformer:基于Conv1D_Transformer的中国北疆地区降雨量临近预报模型

识别二维码

免费阅读英文原文

Liu, Y.; Liu, S.; Chen, J. RLNformer: A Rainfall Levels Nowcasting Model Based on Conv1D_Transformer for the Northern Xinjiang Area of China. Water 2023, 15, 3650. 


12


Gated Attention Recurrent Neural Network: A Deeping Learning Approach for Radar-Based Precipitation Nowcasting

门控注意力循环神经网络:基于雷达的降水临近预报的深度学习方法

识别二维码

免费阅读英文原文

Wu, G.; Chen, W.; Jung, H. Gated Attention Recurrent Neural Network: A Deeping Learning Approach for Radar-Based Precipitation Nowcasting. Water 2022, 14, 2570. 


13


A Methodology for the Prediction of Extreme Precipitation in Complex Terrains: A Case Study of Central Southwest China

复杂地形下极端降水预测方法:以中国西南中部地区为例

识别二维码

免费阅读英文原文

Lei, S.; Yu, S.; Sun, J.; Wang, Z.; Liao, Y. A Methodology for the Prediction of Extreme Precipitation in Complex Terrains: A Case Study of Central Southwest China. Water 2024, 16, 427. 


14


Evaluation of High-Intensity Precipitation Prediction Using Convolutional Long Short-Term Memory with U-Net Structure Based on Clustering

基于聚类的U-Net结构卷积长短期记忆对强降水预测的评价

识别二维码

免费阅读英文原文

Kwon, T.; Yoon, S.-S.; Shin, H.; Yoon, S. Evaluation of High-Intensity Precipitation Prediction Using Convolutional Long Short-Term Memory with U-Net Structure Based on Clustering. Water 2024, 16, 97. 


15


Aeolus Data Validation for an Extreme Precipitation Event in Greece with the COSMO NWP Model

使用COSMO NWP模型对希腊极端降水事件的Aeolus数据验证

识别二维码

免费阅读英文原文

Avgoustoglou, E.; Matsangouras, I.; Pytharoulis, I.; Nastos, P. Aeolus Data Validation for an Extreme Precipitation Event in Greece with the COSMO NWP Model. Water 2023, 15, 3820. 


   Water 期刊介绍


主编:Jean-Luc PROBST, University of Toulouse, France

期刊涵盖所有水资源领域相关的科学技术,主要包括全球和区域水循环的可持续管理,水资源及其与粮食、能源、生物多样性、生态系统功能和人类健康的互联。期刊鼓励领域内研究人员发表实验、理论、建模和大数据等相关研究成果。

2023 Impact Factor

3.0

2023 CiteScore

5.8

Time to First Decision

16.5 Days

Acceptance to Publication

2.9 Days


识别二维码,

订阅期刊最新资讯。


识别二维码,备注学校+姓名+研究方向,小助手邀您加入期刊学者交流群,了解期刊最新活动,与同行交流科研经验。



精选视频


往期回顾

论文选题灵感:“高级氧化技术在水处理中的应用”研究方向 | MDPI Water


版权声明:

本文内容由MDPI中国办公室编辑负责撰写,详细内容请以英文原版为准。如需转载,请于公众号后台留言咨询。


由于微信订阅号推送规则更新,建议您将“MDPI环境与地球科学”设为星标,便可在消息栏中便捷地找到我们,及时了解最新开放出版动态资讯!


点击左下方“阅读原文”,进入期刊主页。

喜欢今天的内容?不如来个 "三连击" ☞【分享,点赞,转发】

水处理文献速递
分享水处理相关的前沿科学成果
 最新文章