第一作者:Yufei Han
通讯作者:周维芝 教授
通讯单位:山东大学土建与水利学院
DOI:10.1016/j.apcatb.2024.124849
由尖晶石氧化物介导的硫酸盐高级氧化过程(SR-AOP)在污染物降解方面显示出巨大的潜力。然而,表面羟基在反应过程中的作用仍不清楚,尤其是在含盐的实际环境中。在此,我们研究了尖晶石氧化物表面羟基在活化过一硫酸盐(PMS)中的作用。通过调整金属元素的内在组成,我们采用简单且可扩展的共沉淀方法合成了具有高表面羟基的 CoFeMnO4 尖晶石。CoFeMnO4 表现出无与伦比的活化性能和独特的非辐射活化途径(以高价金属氧和单线态氧为主),在低浓度 PMS 的条件下,4 分钟内实现了对磺胺甲噁唑的 100% 降解。CoFeMnO4 的表面羟基在活化过程中发挥了关键作用,成为 PMS 的吸附位点并促进其活化。有趣的是,我们发现几种常见的阴离子(Cl-、HCO3-、SO42- 和 NO3-)可以与 CoFeMnO4 的表面羟基发生配体交换,占据了一些用于吸附 PMS 的位点,从而显著抑制了 PMS 在催化剂表面的分解。此外,最终发现这些阴离子对反应系统的抑制作用主要是由于它们对表面羟基的竞争,而不是通常认为的阴离子消耗活性氧。鉴于现实水体中不可避免地存在各种阴离子,这一发现突出了表面羟基作为 SR-AOPs 活性位点的双重性质: 虽然它们有助于活化过程,但阴离子对它们的竞争会降低整个系统的性能。
Fig. 1. Structure and characterization of the samples: (A) XRD patterns of spinel oxides with different Mn content. (B) FTIR spectra of spinel oxides with different Mn content. (C) Nitrogen adsorption-desorption isotherms of CoFe2O4 and CoFeMnO4. (D) The SEM and TEM image of CoFeMnO4. XPS spectra of Co 2p (E), Fe 2p (F), Mn 2p(3 s) (G) and O 1 s (H) regions for CoFeMnO4 and CoFe2O4. (I) The surface hydroxyl density of CoFeMnO4 and CoFe2O4. (J) Adsorption energy of water on CoFeMnO4 and CoFe2O4. (K) Changes in the adjacent Co−O bond lengths of CoFeMnO4 and CoFe2O4 before and after water adsorption. In the DFT calculation, red balls are oxygen, blue balls are cobalt, orange balls are iron, cyan balls are manganese, yellow balls are sulfur, and white balls are hydrogen.
Fig. 2. Catalytic performance of the samples. (A) Performance for SMX degradation of different reaction systems (B) The kinetic fitting of SMX degradation in different reaction systems. (C) Comparison of the yield of CoFeMnO4 using scaled-up synthesis and small-scale synthesis. (D) Comparison of the activities of CoFeMnO4 synthesized on a large scale and on a small scale. (E) Comparison of normalized rate constant of SMX degradation for different catalysts. (F) Cycling performance of CoFeMnO4. Reaction conditions: Temperature = 25°C, pH = 7.0 ± 0.1, [SMX] = 20 μM, [PMS] = 0.1 mM. Catalyst dosage for Fig. 1A is 0.05 g/L, all other catalyst dosages are 0.2 g/L.
Fig. 3. Identification of the main ROS in the CoFeMnO4/PMS system. (A) Effects of different scavengers on SMX degradation in the reaction system. (B) EPR spectra with DMPO as the spin trap. (C) EPR spectra with TEMP as the spin trap. (D) I-t and OCP curves of CoFeMnO4 as working electrode. (E) Transformation of PMSO in CoFeMnO4/PMS system. (F) Transformation of PMSO in PMS alone system. (G) EIC spectrum of the 18O isotope labeling experiment on PMSO. (H) MS spectrum of the 18O isotope labeling experiment on PMSO. Reaction conditions: Temperature = 25°C, pH = 7.0 ± 0.1, [SMX] = 20 μM, [PMS] = 0.1 mM, [Catalyst] = 0.2 g/L.
Fig. 4. Identification of the active sites in the CoFeMnO4/PMS system. (A) Effect of phosphate on SMX degradation. (B) Effect of phosphate on PMS activation. (C) kobs of SMX degradation and PMS decomposition, inset is the correlation of the inhibition rate of phosphate on SMX degradation and PMS decomposition. (D) Effects of phosphate on the ATR-FTIR spectra of CoFeMnO4 in D2O suspension. (E) Effects of PMS on the ATR-FTIR spectra of CoFeMnO4 in D2O suspension. (F) Schematic diagrams of terminal hydroxyls and bridging hydroxyls on CoFeMnO4. (G) Adsorption energy and Bader charge of different hydroxyl sites on PMS. In the DFT calculation, red balls are oxygen, blue balls are cobalt, orange balls are iron, cyan balls are manganese, yellow balls are sulfur, and white balls are hydrogen. Reaction conditions: Temperature = 25°C, pH = 7.0 ± 0.1, [SMX] = 20 μM, [PMS] = 0.1 mM, [Catalyst] = 0.2 g/L.
Fig. 5. Reaction mechanism of the CoFeMnO4/PMS system. (A) The O 1 s (A), Co 2p (B), Fe 2p (C) and Mn 3 s (D) spectra of CoFeMnO4 before and after the reaction. (E) Differential charge of PMS when activated at different sites. (F) FTIR spectra of CoFeMnO4 before and after the reaction. (G) In situ ATR-FTIR of the activation process of PMS by CoFeMnO4 (in H2O). In the DFT calculation, red balls are oxygen, blue balls are cobalt, orange balls are iron, cyan balls are manganese, yellow balls are sulfur, and white balls are hydrogen.
Fig. 6. The influence of anions on the reaction system. Among them, (A), (B), (C) and (D) represent four anions: Cl–, HCO3–, SO42– and NO3–. (1) is the effect of the corresponding anions on SMX removal. (2) is the effect of the corresponding anions on PMS decomposition. (3) is the kobs of SMX removal and PMS decomposition in the system when the corresponding anions exist. The gray color represents the kobs for SMX degradation, while the colored sections represent the kobs for PMS decomposition. (4) is the correlation between SMX degradation and inhibition of PMS decomposition in the presence of the corresponding anions. (5) is the effect of corresponding anions on the ATR-FTIR spectra of CoFeMnO4 in D2O suspension. Reaction conditions: Temperature = 25°C, pH = 7.0 ± 0.1, [SMX] = 20 μM, [PMS] = 0.1 mM, [Catalyst] = 0.2 g/L.
本研究采用简单的共沉淀策略合成了一种具有高表面羟基密度的 CoFeMnO4 尖晶石氧化物,对 PMS 的活化具有优异的催化活性。在 PMS 浓度为 0.1 mM、催化剂浓度为 0.1 g/L 的条件下,催化剂可在 3 分钟内实现 SMX 的完全降解。高价金属氧物种(如 Co(IV)=O 和 Fe(IV)=O)和 1O2 是反应体系中的主要 ROS,表面羟基被确定为 CoFeMnO4 的关键活性位点。与以往的观点不同,本研究发现四种常见的阴离子(如 Cl-、HCO3-、SO42- 和 NO3-)主要是通过与 PMS 竞争 CoFeMnO4 的表面羟基来抑制反应体系的性能,而不是像传统观点认为的那样消耗和淬灭 ROS。鉴于阴离子在实际水体中的广泛存在以及表面羟基在许多金属催化剂中的关键作用,阴离子通过占据表面羟基来抑制反应体系性能的机制可能非常普遍。这一点应引起足够的重视,而不是简单地考虑阴离子和 ROS 之间的相互作用。应制定策略来减少或避免因表面羟基和阴离子之间的相互作用而导致的性能下降。
Yufei Han, Wenchao Zhang, Jianhua Lei, Xu Fei, Weizhi Zhou, Surface hydroxyls of spinel oxides: A double-edged sword in the peroxymonosulfate activation process, Applied Catalysis B: Environment and Energy, 2025, https://doi.org/10.1016/j.apcatb.2024.124849
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧