文献清单:“地下水位预测”方向 | MDPI Water

文摘   2024-12-29 08:19   天津  

点击左上角"MDPI环境与地球科学"关注我们,为您推送更多最新研究。



地下水位预测在资源管理、地质灾害预防、生态环境保护、供水安全保障以及科学研究等方面都具有重要意义。本期文献清单精选 Water 期刊有关“地下水位预测”方向的文章,也许能为你提供灵感!


1

Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System

利用Prophet预测方法开发高分辨率水文地质监测系统进行地下水位预测

Davide Fronzi et al.

https://www.mdpi.com/2621716


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Fronzi, D.; Narang, G.; Galdelli, A.; Pepi, A.; Mancini, A.; Tazioli, A. Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System. Water 202416, 152. 


2

Enhancing Accuracy of Groundwater Level Forecasting with Minimal Computational Complexity Using Temporal Convolutional Network

利用时域卷积网络以最小的计算复杂度提高地下水位预测的准确度

Adnan Haider et al.

https://www.mdpi.com/2570174


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Haider, A.; Lee, G.; Jafri, T.H.; Yoon, P.; Piao, J.; Jhang, K. Enhancing Accuracy of Groundwater Level Forecasting with Minimal Computational Complexity Using Temporal Convolutional Network. Water 202315, 4041.


3

A Case Study: Groundwater Level Forecasting of the Gyorae Area in Actual Practice on Jeju Island Using Deep-Learning Technique

案例研究:利用深度学习技术对济州岛Gyorae区域地下水位进行实际预测

Deokhwan Kim et al.

https://www.mdpi.com/2173304


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Kim, D.; Jang, C.; Choi, J.; Kwak, J. A Case Study: Groundwater Level Forecasting of the Gyorae Area in Actual Practice on Jeju Island Using Deep-Learning Technique. Water 202315, 972. 


4

Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis

利用机器学习进行地下水位建模:系统回顾和Meta分析

Arman Ahmadi et al.

https://www.mdpi.com/1547612


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Ahmadi, A.; Olyaei, M.; Heydari, Z.; Emami, M.; Zeynolabedin, A.; Ghomlaghi, A.; Daccache, A.; Fogg, G.E.; Sadegh, M. Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water 202214, 949. 


5

A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level

将元启发式优化算法和机器学习方法的结合提高地下水位的预测

Zahra Kayhomayoon et al.

https://www.mdpi.com/1519198


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Kayhomayoon, Z.; Babaeian, F.; Ghordoyee Milan, S.; Arya Azar, N.; Berndtsson, R. A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level. Water 202214, 751.


6

Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review 

利用机器学习技术改进现有地下水数值模型的结果:综述

Cristina Di Salvo

https://www.mdpi.com/1742034


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Di Salvo, C. Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review. Water 202214, 2307. 


7

A CNN-LSTM Model Based on a Meta-Learning Algorithm to Predict Groundwater Level in the Middle and Lower Reaches of the Heihe River, China

基于Meta学习算法的CNN-LSTM 模型预测中国黑河中下游地下水位

Xingyu Yang and Zhongrong Zhang

https://www.mdpi.com/1754530


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Yang, X.; Zhang, Z. A CNN-LSTM Model Based on a Meta-Learning Algorithm to Predict Groundwater Level in the Middle and Lower Reaches of the Heihe River, China. Water 202214, 2377.


8

Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions

利用机器学习进行地下水位预测以支持缺水地区的可持续灌溉

Wanru Li et al.

https://www.mdpi.com/2504670


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Li, W.; Finsa, M.M.; Laskey, K.B.; Houser, P.; Douglas-Bate, R. Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water 2023, 15, 3473.


9

Dynamic Changes in Groundwater Levelunder Climate Changes in the Gnangara Region, Western Australia

西澳大利亚州格南加拉地区气候变化下地下水位的动态变化

Feihe Kong et al.

https://www.mdpi.com/1440374


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Kong, F.; Xu, W.; Mao, R.; Liang, D. Dynamic Changes in Groundwater Level under Climate Changes in the Gnangara Region, Western Australia. Water 2022, 14, 162.


10

Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain

基于机器学习的地下水位预测:以河北平原为例

Zhenjiang Wu et al.

https://www.mdpi.com/2148772


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Wu, Z.; Lu, C.; Sun, Q.; Lu, W.; He, X.; Qin, T.; Yan, L.; Wu, C. Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain. Water 202315, 823.


11

Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin

鄱阳湖流域地下水位异常上升的时空分布与统计分析

Ziyi Song et al.

https://www.mdpi.com/1675946


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Song, Z.; Lu, C.; Zhang, Y.; Chen, J.; Liu, W.; Liu, B.; Shu, L. Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin. Water 202214, 1906.


12

Groundwater Level Prediction with Deep Learning Methods

使用深度学习方法预测地下水位

Hsin-Yu Chen et al.

https://www.mdpi.com/2458742


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Chen, H.-Y.; Vojinovic, Z.; Lo, W.; Lee, J.-W. Groundwater Level Prediction with Deep Learning Methods. Water 2023, 15, 3118.


13

Minimizing Errors in the Prediction of Water Levels Using Kriging Technique in Residuals of the Groundwater Model

利将克里金技术应用于地下水模型的残差中最大限度地减少水位预测误差

Alireza Asadi and Kushal Adhikari

https://www.mdpi.com/1476762


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Asadi, A.; Adhikari, K. Minimizing Errors in the Prediction of Water Levels Using Kriging Technique in Residuals of the Groundwater Model. Water 202214, 426.


14

Groundwater Level Trend Analysis and Prediction in the Upper Crocodile Sub-Basin, South Africa

南非the Upper Crocodile Sub-Basi地下水位趋势分析与预测

Tsholofelo Mmankwane Tladi et al.

https://www.mdpi.com/2445262


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Tladi, T.M.; Ndambuki, J.M.; Olwal, T.O.; Rwanga, S.S. Groundwater Level Trend Analysis and Prediction in the Upper Crocodile Sub-Basin, South Africa. Water 202315, 3025. 


15

A Hybrid Coupled Model for Groundwater-Level Simulation and Prediction: A Case Study of Yancheng City in Eastern China

地下水位模拟与预测的混合耦合模型:以中国东部盐城为例

Manqing Hou et al.

https://www.mdpi.com/2189924


识别二维码,

免费阅读英文原文。

原文出自 Water 期刊

Hou, M.; Chen, S.; Chen, X.; He, L.; He, Z. A Hybrid Coupled Model for Groundwater-Level Simulation and Prediction: A Case Study of Yancheng City in Eastern China. Water 202315, 1085.


  Water 期刊介绍


主编Jean-Luc PROBST, University of Toulouse, France

期刊涵盖所有水资源领域相关的科学技术,主要包括全球和区域水循环的可持续管理,水资源及其与粮食、能源、生物多样性、生态系统功能和人类健康的互联。期刊鼓励领域内研究人员发表实验、理论、建模和大数据等相关研究成果。

2023 Impact Factor

3.0

2023 CiteScore

5.8

Time to First Decision

16.5 Days

Acceptance to Publication

2.9 Days


识别二维码,

订阅 Water 期刊最新资讯。


识别二维码,备注学校+姓名+研究方向,小助手邀您加入期刊学者交流群,了解期刊最新活动,与同行交流科研经验。



精选视频


往期回顾

Water:水电站运行管理研究进展 | MDPI 特刊征稿


版权声明:

*本文由MDPI中国办公室翻译撰写,文中涉及到的论文翻译部分,为译者在个人理解之上的概述与转达,论文详情及准确信息请参考英文原文。本文遵守 CC BY 4.0 许可 (https://creativecommons.org/licenses/by/4.0/)。如需转载,请于公众号后台留言咨询。


由于微信订阅号推送规则更新,您可以将“MDPI环境与地球科学”设为星标,便可在消息栏中便捷地找到我们,及时了解最新开放出版动态资讯!


点击左下方“阅读原文”,进入期刊主页。

喜欢今天的内容?给我们点个【在看】吧!

水处理文献速递
分享水处理相关的前沿科学成果
 最新文章