文献清单:“机器学习在水文学研究中的应用”方向 | MDPI Hydrology

文摘   2024-12-31 08:24   天津  

点击左上角“MDPI环境与地球科学”关注我们,为您推送更多最新研究。

文献清单

机器学习在水文学研究中的应用


正在为水文学研究中的复杂数据分析而苦恼吗?别急,这里有一份精心挑选的“机器学习在水文学研究中的应用”文献清单,或许能为你的研究带来新的视角和思路!





1. 

ML-Based Streamflow Prediction in the Upper Colorado River Basin Using Climate Variables Time Series Data

基于机器学习的科罗拉多河上游流域流量预测:利用气候变量时间序列数据


识别二维码,免费阅读英文原文。

Hosseinzadeh, P.; Nassar, A.; Boubrahimi, S.F.; Hamdi, S.M. ML-Based Streamflow Prediction in the Upper Colorado River Basin Using Climate Variables Time Series Data. Hydrology 202310, 29.



2. 

Evaluation of Various Resolution DEMs in Flood Risk Assessment and Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in Thessaly, Greece

不同分辨率DEM在洪水风险评估中的应用评价及数据稀缺地理空间区域洪水图绘制实用规则:以希腊塞萨利为例


识别二维码,免费阅读英文原文。

Xafoulis, N.; Kontos, Y.; Farsirotou, E.; Kotsopoulos, S.; Perifanos, K.; Alamanis, N.; Dedousis, D.; Katsifarakis, K. Evaluation of Various Resolution DEMs in Flood Risk Assessment and Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in Thessaly, Greece. Hydrology 202310, 91.



3.

Comparison of Tree-Based Ensemble Algorithms for Merging Satellite and Earth-Observed Precipitation Data at the Daily Time Scale

日尺度上基于树的集成算法比较:用于合并卫星和地面观测的降水数据


识别二维码,免费阅读英文原文。

Papacharalampous, G.; Tyralis, H.; Doulamis, A.; Doulamis, N. Comparison of Tree-Based Ensemble Algorithms for Merging Satellite and Earth-Observed Precipitation Data at the Daily Time Scale. Hydrology 2023, 10, 50.



4.

Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region

将卫星图像和地面测量与机器学习模型相结合,用于监测半干旱地区的湖泊动态


识别二维码,免费阅读英文原文。

Ekpetere, K.; Abdelkader, M.; Ishaya, S.; Makwe, E.; Ekpetere, P. Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology 202310, 78.



5.

Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River

通过在河流流量观测中整合气象参数来提高洪水预测的准确性:以渥太华河为例


识别二维码,免费阅读英文原文。

Letessier, C.; Cardi, J.; Dussel, A.; Ebtehaj, I.; Bonakdari, H. Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River. Hydrology 202310, 164.



6.

Assessing Hydrological Simulations with Machine Learning and Statistical Models

利用机器学习和统计模型评估水文模拟


识别二维码,免费阅读英文原文。

Rozos, E. Assessing Hydrological Simulations with Machine Learning and Statistical Models. Hydrology 202310, 49. 



7.

A Machine-Learning Framework for Modeling and Predicting Monthly Streamflow Time Series

用于建模和预测月度流量时间序列的机器学习框架


识别二维码,免费阅读英文原文。

Dastour, H.; Hassan, Q.K. A Machine-Learning Framework for Modeling and Predicting Monthly Streamflow Time Series. Hydrology 202310, 95.



8.

Differentiation of Multi-Parametric Groups of Groundwater Bodies through Discriminant Analysis and Machine Learning

通过判别分析和机器学习区分多参数地下水体群


识别二维码,免费阅读英文原文。

Mohsine, I.; Kacimi, I.; Valles, V.; Leblanc, M.; El Mahrad, B.; Dassonville, F.; Kassou, N.; Bouramtane, T.; Abraham, S.; Touiouine, A.; et al. Differentiation of Multi-Parametric Groups of Groundwater Bodies through Discriminant Analysis and Machine Learning. Hydrology 202310, 230.



9.

Discerning Watershed Response to Hydroclimatic Extremes with a Deep Convolutional Residual Regressive Neural Network

利用深度卷积残差回归神经网络识别流域对水文气候极端事件的响应


识别二维码,免费阅读英文原文。

Larson, A.; Hendawi, A.; Boving, T.; Pradhanang, S.M.; Akanda, A.S. Discerning Watershed Response to Hydroclimatic Extremes with a Deep Convolutional Residual Regressive Neural Network. Hydrology 202310, 116



10.

Utilizing Hybrid Machine Learning Techniques and Gridded Precipitation Data for Advanced Discharge Simulation in Under-Monitored River Basins

利用混合机器学习技术及网格化降水数据对监测不足的河流域进行高级流量模拟


识别二维码,免费阅读英文原文。

Morovati, R.; Kisi, O. Utilizing Hybrid Machine Learning Techniques and Gridded Precipitation Data for Advanced Discharge Simulation in Under-Monitored River Basins. Hydrology 202411, 48.



11.

Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability

模拟渥太华河的水动力行为:利用数值模拟和机器学习增强可预测性


识别二维码,免费阅读英文原文。

Cardi, J.; Dussel, A.; Letessier, C.; Ebtehaj, I.; Gumiere, S.J.; Bonakdari, H. Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability. Hydrology 202310, 177.



12.

Enhancing Monthly Streamflow Prediction Using Meteorological Factors and Machine Learning Models in the Upper Colorado River Basin

利用气象因素和机器学习模型提高科罗拉多河上游流域月流量预测


识别二维码,免费阅读英文原文。

Thota, S.; Nassar, A.; Filali Boubrahimi, S.; Hamdi, S.M.; Hosseinzadeh, P. Enhancing Monthly Streamflow Prediction Using Meteorological Factors and Machine Learning Models in the Upper Colorado River Basin. Hydrology 202411, 66.



13.

A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination

机器学习方法绘制地下水资源对农业污染的脆弱性图


识别二维码,免费阅读英文原文。

Gómez-Escalonilla, V.; Martínez-Santos, P. A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination. Hydrology 202411, 153.



14.

Predicting Flood Inundation after a Dike Breach Using a Long Short-Term Memory (LSTM) Neural Network

使用长短期记忆 (LSTM) 神经网络预测堤坝决口后的洪水淹没情况


识别二维码,免费阅读英文原文。

Besseling, L.S.; Bomers, A.; Hulscher, S.J.M.H. Predicting Flood Inundation after a Dike Breach Using a Long Short-Term Memory (LSTM) Neural Network. Hydrology 202411, 152.



15.

Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA)

通过机器学习评估现场测量与GRACE衍生估计在地下水水文动力学差异:以美国亚祖-密西西比三角洲农业生态关系影响的测试案例


识别二维码,免费阅读英文原文。

Heintzman, L.J.; Ghaffari, Z.; Awawdeh, A.R.; Barrett, D.E.; Yarbrough, L.D.; Easson, G.; Moore, M.T.; Locke, M.A.; Yasarer, H.I. Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA). Hydrology 202411, 186.



16.

Applications of Machine Learning and Remote Sensing in Soil and Water Conservation

机器学习和遥感技术在土壤和水资源保护中的应用


识别二维码,免费阅读英文原文。

Kim, Y.I.; Park, W.H.; Shin, Y.; Park, J.-W.; Engel, B.; Yun, Y.-J.; Jang, W.S. Applications of Machine Learning and Remote Sensing in Soil and Water Conservation. Hydrology 202411, 183.



Hydrology 期刊介绍


主编:Ezio Todini, Italian Hydrological Society, Italy

期刊主题涵盖了河流水文学、湖泊水文学、沼泽水文学、冰川水文学、雪水文学、水文气象学、地下水水文学、区域水文学和海洋水文学等水文领域。目前,期刊已被 ESCI、Scopus 等其他数据库收录。

2023 Impact Factor

3.1

2023 CiteScore

4.9

Time to First Decision

18.6 Days

Acceptance to Publication

2.8 Days


识别二维码,

订阅期刊最新资讯。


精选视频


往期回顾

论文选题灵感:农业与水文 | MDPI Hydrology


版权声明:

*本文内容由MDPI中国办公室编辑负责撰写,详细内容请以英文原版为准。如需转载,请于公众号后台留言咨询。


由于微信订阅号推送规则更新,您可以将“MDPI环境与地球科学”设为星标,便可在消息栏中便捷地找到我们,及时了解最新开放出版动态资讯!


点击左下方“阅读原文”,进入期刊主页。

喜欢今天的内容?给我们点个【在看】吧!

水处理文献速递
分享水处理相关的前沿科学成果
 最新文章