[1] Meyer F, Bannert K, Wiese M, et al. Molecular mechanismcontributing to malnutrition and sarcopenia in patients withliver cirrhosis[J]. Int J Mol Sci, 2020, 21(15):5357. DOI:10.3390/ijms21155357.
[2] Caligiuri A, Gentilini A, Pastore M, et al. Cellular and molecular mechanisms underlying liver fibrosis regression[J].Cells, 2021, 10(10):2759. DOI:10.3390/cells10102759.
[3] Delgado ME, Cárdenas BI, Farran N, et al. Metabolic reprogramming of liver fibrosis[J]. Cells, 2021, 10(12):3604.DOI:10.3390/cells10123604.
[4] Xu L, Yang TY, Zhou YW, et al. Bmal1 inhibits phenotypictransformation of hepatic stellate cells in liver fibrosis viaIDH1/α -KG-mediated glycolysis[J]. Acta PharmacologicaSinica, 2022, 43(2):316-329. DOI:10.1038/s41401-021-00658-9.
[5] Mejias M, Gallego J, Naranjo-Suarez S, et al. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis[J]. Gastroenterology, 2020, 159(1):273-288. DOI:10.1053/j.gastro.2020.03.008.
[6] Guo X, Zheng B, Wang J, et al. Exploring the mechanism ofaction of Chinese medicine in regulating liver fibrosis basedon the alteration of glucose metabolic pathways[J]. PhytotherRes, 2024, 38(10):4865-4876. DOI:10.1002/ptr.7667.
[7] Zhou MY, Cheng ML, Huang T, et al. Transforming growthfactor beta-1 upregulates glucose transporter 1 and glycolysisthrough canonical and noncanonical pathways in hepaticstellate cells[J]. World J Gastroenterol, 2021, 27(40):6908-6926.DOI:10.3748/wjg.v27.i40.6908.
[8] Nguyen HTT, Wimmer R, Le VQ, et al. Metabolic fingerprintof progression of chronic hepatitis B: changes in the metabolome and novel diagnostic possibilities[J]. Metabolomics,2021, 17(2):16. DOI:10.1007/s11306-020-01767-y.
[9] Salgüero S, Rojo D, Berenguer J, et al. Plasma metabolomicfingerprint of advanced cirrhosis stages among HIV/HCV-coinfected and HCV-monoinfected patients[J]. Liver Int, 2020, 40(9):2215-2227. DOI:10.1111/liv.14580.
[10] Wu T, Wang M, Ning F, et al. Emerging role for branched-chain amino acids metabolism in fibrosis[J]. Pharmacol Res, 2023, 187:106604. DOI:10.1016/j.phrs.2022.106604.
[11] Tsuchiya Y, Seki T, Kobayashi K, et al. Fibroblast growthfactor 18 stimulates the proliferation of hepatic stellate cells,thereby inducing liver fibrosis[J]. Nat Commun, 2023, 14(1):6304. DOI:10.1038/s41467-023-42058-z.
[12] Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33(2):242-257. DOI:10.1016/j.cmet.2020.10.026.
[13] Wang TY, Wang RF, Bu ZY, et al. Association of metabolicdysfunction-associated fatty liver disease with kidney disease[J]. Nat Rev Nephrol, 2022, 18(4):259-268. DOI:10.1038/s41581-021-00519-y.
[14] Vallianou N, Christodoulatos GS, Karampela I, et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives[J]. Biomolecules, 2021, 12(1):56. DOI: 10.3390/
biom12010056.
[15] Zhai S, Qin S, Li L, et al. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice[J]. FEMS Microbiol Lett, 2019, 366(13):fnz153.DOI:10.1093/femsle/fnz153.
[16] Miyaaki H, Kobayashi H, Miuma S, et al. Blood carnitineprofiling on tandem mass spectrometry in liver cirrhoticpatients[J]. BMC Gastroenterol, 2020, 20(1):41. DOI:10.1186/s12876-020-01190-6.
[17] Hanai T, Shiraki M, Imai K, et al. Usefulness of carnitine supplementation for the complications of liver cirrhosis[J].Nutrients, 2020, 12(7):1915. DOI:10.3390/nu12071915.
[18] Bates J, Vijayakumar A, Ghoshal S, et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation[J]. J Hepatol, 2020, 73(4):896-905. DOI:10.1016/j.jhep.2020.04.037.
[19] Loomba R, Kayali Z, Noureddin M, et al. GS-0976 reduceshepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2018,155(5):1463-1473. DOI:10.1053/j.gastro.2018.07.027.
[20] Lai KKY, Kweon SM, Chi F, et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6[J]. Gastroenterology,2017, 152(6):1477-1491. DOI:10.1053/j.gastro.2017.01.021.
[21] Paulusma CC, Lamers WH, Broer S, et al. Amino acid metabolism, transport and signalling in the liver revisited[J].Biochem Pharmacol, 2022, 201:115074. DOI:10.1016/j.bcp.2022.115074.
[22] Gilgenkrantz H, Mallat A, Moreau R, et al. Targeting cell-intrinsic metabolism for antifibrotic therapy[J]. J Hepatol,2021, 74(6):1442-1454. DOI:10.1016/j.jhep.2021.02.012.
[23] Du K, Hyun J, Premont RT, et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells[J]. Gastroenterology, 2018, 154(5):1465-1479.e13. DOI:10.1053/j.gastro.2017.12. 022.
[24] Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD+synthesis, and mitochondrial function: targeting tryptophanmetabolism to promote longevity and healthspan[J]. Exp Gerontol, 2020, 132:110841. DOI:10.1016/j.exger. 2020.110841.
[25] Lo EKK, Felicianna, Xu JH, et al. The emerging role of branched-chain amino acids in liver diseases[J]. Biomedicines,2022, 10(6):1444. DOI:10.3390/ biomedicines10061444.
[26] Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF- β1/Smad signaling pathway and interleukins in CCl4-induced liver fibrosis[J]. Fundam Clin Pharmacol, 2017, 31(5):534-545. DOI:10.1111/fcp.12297.
[27] Yu D, Richardson NE, Green CL, et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine[J]. Cell Metab, 2021, 33(5):905-922,e6.DOI:10.1016/j.cmet.2021.03.025.
[28] Daou N, Viader A, Cokol M, et al. A novel, multitargeted endogenous metabolic modulator composition impacts metabolism,inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models[J]. Sci Rep, 2021, 11(1):11861. DOI:10.1038/s41598-021-88913-1.