文献综述|山东大学何作利教授团队Chinese J. Catal.:光催化耦合技术在废水处理领域的研究进展

文摘   科学   2024-07-28 08:06   北京  
点击订阅公众号 | 前沿学术成果每日更新









全文速览

随着工业进步和人口增长,大量难降解的有机污染物被排放到水体中,环境污染成为一个日益严峻的全球性问题。大多数有机污染物具有致癌性、诱变性、细菌性和复杂多样性,难以通过传统的化学、生物和光解等处理方法有效去除,亟需探索环保有效的去除污染物技术。光催化技术可以直接利用太阳光进行污染物降解,对环境友好,然而,其实际应用受到太阳能利用率低、催化剂分离困难、催化剂稳定性低以及矿化率低等因素的限制。近年来,将光催化技术与其他技术耦合成为解决上述困难的新趋势。对光催化耦合技术的最新进展和工作机制进行系统地梳理和总结对进一步推动去除污染物技术的发展具有重要意义。

本文系统总结了光催化耦合技术在废水处理中的最新研究进展。首先,简要介绍了光催化的机理和研究进展,总结了光催化技术在废水处理过程中存在的问题。然后,简要介绍了光催化耦合技术在解决上述问题过程中的研究进展和发展趋势。其后,通过重点介绍一些典型研究,详细地阐述了光催化技术与传统水处理技术(吸附法、膜分离法、生物降解法)、高级氧化技术(电催化法、臭氧化法、Fenton法、过硫酸盐法)和其他技术(热催化法、等离子体法、超声波法、压电催化法、磁场法)的耦合机制。此外,进一步探讨了光催化技术与各种技术耦合的独特优势,概述了不同光催化耦合技术的设计原理和具体应用。最后,简要总结了光催化耦合技术所面临的挑战和未来的研究方向。








图文摘要








引言

光催化的机理主要包括四个步骤:光的激发、载流子的迁移、载流子的分离和氧化还原反应。为了提高光催化降解活性,已经开发了各种修饰策略,包括形貌控制、缺陷工程、助催化剂负载、元素掺杂和异质结构建(S型、Z型、p-n和肖特基结)






同位素标记技术

图文导读

Fig. 1. Mechanism of photocatalysis (来自原文Fig. 1).

Fig. 2. Photocatalyst modification strategies (来自原文Fig. 2).

光催化处理废水存在的主要问题是难降解有机污染物的降解效率和矿化率较低。难降解有机污染物的降解效率和矿化率取决于反应物的扩散和吸附,表面分离的光生载流子的数量,活性物种的数量和类型,以及反应物和中间体的活化。值得注意的是,这些因素可以通过使用光催化耦合技术来调节。这使得反应速度、去除率和降解路径得到改善,最终实现较高的降解效率和矿化率。事实上,一些物理、化学和生物光催化耦合策略,包括吸附、膜分离、生物降解、电催化、臭氧氧化、芬顿反应、过硫酸盐氧化、热催化、等离子体处理、超声降解、压电催化和磁场加速降解,都提高了降解效率和矿化率。这种光催化耦合技术在提高难降解有机污染物去除方面的潜力尤为显著

Fig. 3. Requirements for and problems with photocatalysis technologies (来自原文Fig. 3).

Fig. 4. Photocatalytic coupling technologies (来自原文Fig. 4).


2. 催化耦合技术的机理

通过重点介绍一些典型研究, 详细地阐述了光催化技术与传统水处理技术(吸附法、膜分离法、生物降解法)、高级氧化技术(电催化法、臭氧化法、Fenton法、过硫酸盐法)和其他技术(热催化法、等离子体法、超声波法、压电催化法、磁场法)的耦合机制。

Fig. 5. (a) Top and side views of optimized BC-MB and BC-RhB structures. (b) Photoluminescence emission spectra of prepared materials. (c) MB and RhB degradation mechanism by BC/2ZIS/WO3. (d) Photocatalytic mechanism of BiOBr/Bi2MoO6@MXene under visible light irradiation. (e) Crystal structure, energy band diagrams, density, and local density of states of Bi2MoO6@MXene and BiOBr/Bi2MoO6@MXene. 1,2,3-TCB degradation mechanism (f) and bacterial community composition (genus) (g) in the ICPB system (来自原文Fig. 5).



Fig. 6. (a) Degradation pathway, charge separation, and mechanism of PFOA degradation in the photoelectrocatalysis system. (b) Optimal cell structures of CN, Cl-CN, and Cl/S-CN (left) and electron density diagrams of C3N4and Cl/S-CN near the O, C, and S atoms (right). (c) Formation mechanism of ROS-rich region during the reaction and the ROS chain reaction. (d) Adsorption energy and charge density of H2O2 on Bi, Bi-Fe, and Fe sites of BiOCl@Fe-BiOCl (top) and activation energy of H2O2to •OH transformation at various sites (bottom). (e) CIP degradation mechanism by BM in concurrent photocatalysis-persulfate activation system (来自原文Fig. 6).


Fig. 7. (a) BPF degradation mechanism by CuO@NCs. (b) Optimized structure, f0, and f (top) and three degradation pathways of BPF by CuO@NCs in the photothermal catalytic process (bottom) (来自原文Fig. 7).


Fig. 8. (a) Reaction mechanism of the photocatalytic plasma reactor. (b) Mechanism of MO degradation under the combined action of O3 and photocatalysis. (c) Mechanism of RhB degradation by ultrasound-assisted TiO2photocatalysis. (d) Structure and attack sites of DCF. (e) Mechanism of DCF degradation by 1T/2H MS/BWO under light, ultrasonic, and combined light/ultrasonic irradiation, and the DCF degradation pathway. (f) DOS (left) and (001)-spin polarized planar 3D spatial distribution (right) of metal-deficient Ti15O32 model. (g) Degradation efficiency of different pollutants by TiO2-10 under different magnetic field intensities (来自原文Fig. 8).



3. 耦合工艺处理有机污染物的设计与应用

3.1. 与传统水处理技术结合

Fig. 9. Materials used in photocatalytic adsorption technologies (来自原文Fig. 9).

Fig. 10. (a) Schematic diagram of PMR. (b) Preparation of Ag-TiO2/PVDF-HFP membrane (left) and mechanism and stability of NOR degradation (right) (来自原文Fig. 14).


Fig. 11. (a) SM2 removal rates of BiVO4, algae, and coupled system. Asterisks represent significant differences. (b) Photograph of ICPB reactor for CIP degradation. (c) SMX and dissolved organic carbon removal rates of different systems. (d) Photograph of biofilm culture reactor. (e) ICPB reactor and its related mechanism (来自原文Fig. 16).


3.2. 与高级氧化技术结合

Fig. 12. (a) SEM image (left) and cross-sectional morphology (right) of Ar-Fe2O3/Ti3+-TiO2-NTs. (b) Pollutant degradation mechanism of Ar-Fe2O3/Ti3+-TiO2-NTs. (c) Removal of seven pollutants by photoelectrocatalysis using Ar-Fe2O3/Ti3+-TiO2-NTs. (d) Dual photoelectrocatalysis coupling system. (来自原文Fig. 18).

Fig. 13. (a) ALZ and MTZ removal mechanism by photocatalytic ozonation. (b) Experimental device of photocatalytic O3 system. (c) Experimental setup of photocatalytic ozonation system. (d) Experimental device of photocatalytic ozonation system (来自原文Fig. 20).


Fig. 14. (a) Scheme of σ–π bond formation in Fe-doped g-C3N4. (b) Phenol degradation rates of different Fenton, photocatalytic, and photo-Fenton oxidation systems. (c) Phenol removal mechanism of the photo-Fenton oxidation system (来自原文Fig. 22).


Fig. 15. (a) CIP removal rate (left) and pseudo-first-order kinetic curve (right). (b) Proposed CIP removal mechanism in the coupling process. (c) LEV removal efficiency and K value of different processes. (d) Mechanism and pathway of LEV removal in the coupling process (来自原文Fig. 24).



3.3. 与其他技术结合

Fig. 16. (a) Schematic (left) and photograph (right) of the experimental device. (b) SEM images of 3D flower-like CuS. (c) Mechanism of MB degradation during photothermal catalysis. (d) Plots of ln(C0/Ct) vs. photocatalytic time (t). (e) Synergistic photocatalytic-photothermal degradation of RhB and Ag+ by MXene membrane. (f) Kinetics of RhB removal by Ag/TCM-5 membrane under different conditions (来自原文Fig. 26).

Fig. 17. (a) Experimental device used in the photocatalytic plasma coupling system. (b) PNP removal rate in photocatalysis, plasma, and coupled photocatalysis/plasma systems within 30 min. (c) Experimental device diagram. (d) Removal rate constants of photocatalysis, plasma, and coupled photocatalysis/plasma treatments. (e) CIP removal mechanism by DBD. (f) Experimental setup of the coupled system. (g) Synergistic mechanism of NOR degradation by VP-Fe3O4 and UBP (来自原文Fig. 27).

Fig. 18. (a) RhB degradation by rutile TiO2 nanorods (top) and anatase TiO2 nanoflakes (bottom) under ultrasonic, visible light, and combined ultrasonic and visible light irradiation. (b) TC removal efficiency of different systems. (c) TC mineralization by C2ZO catalyst after 180 min of illumination at 20 °C and pH 8. (d) Proposed mechanism of ultrasonic photocatalysis by Cu2MG composites for TC and CIP degradation (来自原文Fig. 28).

Fig. 19. (a) MO degradation ratio under different conditions. (b) RhB degradation efficiency and k values under different conditions. (c) Experimental device for RhB degradation via coupled piezo-photocatalysis. (d) Piezo-photocatalytic process of AO g-C3N4. (e) Band scheme of equilibrium system and systems during photocatalysis, piezocatalysis, and piezo-photocatalysis. (f) RhB degradation mechanism by SBTO/BOC composite in the coupled piezo-photocatalysis process and kinetic rate constants of different catalytic processes. (g) RhB degradation mechanism of SBTO/Ag2O composite materials in piezo-photocatalysis process and k values of different reaction systems (来自原文Fig. 29).

Fig. 20. (a) Mechanism of coupled photocatalysis-magnetic field system. (b) Experimental device used in photocatalysis-magnetic field system. (c) Spin-dependent DOS engineering effect of Co-doped ZnO nanowire surface under an applied magnetic field. (d) Experimental equipment of the coupling system. (e) MO degradation efficiency by photocatalysis-magnetic field coupling system. (f) Device diagram of microfluidic reaction system (来自原文Fig. 30).








研究意义

本文简要介绍了光催化技术的机理和研究进展,并讨论了光催化技术在实际废水处理应用中面临的挑战。许多研究人员将光催化与不同的水处理技术耦合以克服这些问题。对光催化技术耦合传统水处理(例如,吸附、膜分离和生物降解)、高级氧化(例如,电催化、臭氧氧化、芬顿反应和过硫酸盐氧化)和其他技术(例如,热催化、等离子体处理、超声波辐射、压电催化和磁场加速降解)降解废水中有机污染物的耦合机理、最新研究进展和相关应用进行了总结和讨论。这种光催化耦合技术可以显著增强废水中有机污染物的去除效率。然而,耦合技术的实现面临各种挑战。未来的研究工作应集中在以下挑战和方向上。

(1)在理论研究方面,目前缺乏对光催化耦合技术的深入机理分析和系统的研究,应结合光催化剂的特性并通过多种技术手段对耦合过程进行深入分析,并深入挖掘光催化耦合机理,以进一步指导催化剂的理性设计。

(2)目前,光催化耦合技术研究主要集中在处理单一污染物或实验室模拟废水,未来需要进一步开发新型稳定、高效的催化剂以满足实际生产和生活中排放的污水处理要求。

(3)应探索新型耦合技术,可以产生更多具有强氧化能力的自由基,以进一步提高污水处理的效率和经济可行性。

(4)传统的光催化反应器在光催化耦合体系中可能不适用,应针对不同耦合系统探索新型反应器,以满足大规模工业应用的需要。

该研究成果得到了国家自然科学基金(22278245)、山东省泰山学者青年专家计划(tsqn201909026)、山东大学未来青年资助计划(61440089964189)、山东大学青年交叉科学创新群体项目(2020QNQT014)、山东省泰山学者特聘专家计划(tstp20230604)的资助。

文献信息

郑子叶,女,山东大学资源与环境专业2022级硕士研究生,主要从事光催化耦合技术对氯酚废水的处理。



通讯作者

何作利,研究员,博士生导师。山东省泰山学者青年专家、山东大学未来青年学者、教育部研究生教育评估监测专家、山东省科技专家库专家、山东省人才促进会会员、广东省科技专家库专家、2020年山东大学十佳书院导师、中国感光学会-光催化专业委员会会员、中国化学会会员,Coatings编委、Rare MetalsActa Phys-chim Sin青年编委。20222023年入选全球前2%顶尖科学家榜单。近年来围绕催化剂的设计与合成、光解水产氢、水中有机污染物与抗生素去除、重金属离子去除与监测、柔性纤维制备与器件开发、柔性织物器件开发等方面开展了大量研究工作,为解决有机污染物去除与传感检测提供了理论和技术基础。通讯邮箱:zlhe@sdu.edu.cn


何作利教授课题组网站链接

http://faculty.sdu.edu.cn/hezuoli/zh_CN/index.htm

文献信息

Ziye Zheng, Shuang Tian, Yuxiao Feng, Shan Zhao, Xin Li, Shuguang Wang, Zuoli He, Recent advances of photocatalytic coupling technologies for wastewater treatment, Chinese Journal of Catalysis, 54, 2023, 88-136.

原文连接:https://doi.org/10.1016/S1872-2067(23)64536-X



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧


水处理文献速递
分享水处理相关的前沿科学成果
 最新文章