第一作者:Chunsheng Ding
通讯作者:孙兆奇 教授/张苗 副教授/陈蕾 副研究员(生命科学学院)
通讯单位:安徽大学材料科学与工程学院
光催化和过硫酸氢盐(PMS)激活的结合被认为是处理水中有机污染物的有效方法;然而,目前用于激活PMS的光催化剂主要是粉末状的,由于难以回收,会造成二次污染。在这项研究中,采用水热法和原位自聚法,在氟掺杂的氧化锡基底上制备了铜离子螯合聚多巴胺/二氧化钛(Cu-PDA/TiO2)纳米薄膜用于激活PMS。结果表明,Cu-PDA/TiO2 + PMS + Vis在60分钟内降解了94.8%的加替沙星(GAT),反应速率常数达到4.928×10-2 min-1,分别比TiO2 + PMS + Vis(0.789×10-2 min-1)和PDA/TiO2 + PMS + Vis(1.219×10-2 min-1)高6.25和4.04倍。Cu-PDA/TiO2纳米膜易于回收,并能激活PMS降解GAT,与粉末状的光催化剂不同,它同时保持了出色的稳定性,非常适用于实际水环境中的应用。以大肠杆菌、金黄色葡萄球菌和绿豆芽为实验对象进行了生物毒性实验,结果表明Cu-PDA/TiO2+PMS+Vis体系具有良好的解毒能力。此外,通过密度泛函理论(DFT)计算和原位X射线光电子能谱(XPS),对阶梯状(S-scheme)Cu-PDA/TiO2纳米膜异质结的形成机制进行了详细研究。最后,提出了激活PMS降解GAT的具体过程,为水体污染的实际应用提供了一种新型光催化剂。
在这项研究中,我们在氟掺杂的氧化锡(FTO)衬底上原位生成了TiO2纳米阵列。同时,将Cu2+与PDA螯合形成的涂层(Cu-PDA)应用于TiO2上,形成Cu-PDA/TiO2纳米膜异质结,这解决了回收粉末光催化剂的困难。此外,考虑到PDA的金属离子螯合能力,在PMS的活化过程中,Cu2+的浸出被降到了最低。此外,还全面评估了Cu-PDA/TiO2 + PMS + Vis在不同条件下(如GAT浓度、PMS用量、阴离子、pH值、水体、阳光)对GAT的降解,并通过耦合密度泛函理论(DFT)和液相色谱质谱技术(LC-MS)详细分析了GAT的降解途径。随后,还对GAT的降解产物进行了毒性分析。最后,通过整合DFT计算和实验,全面研究了Cu-PDA/TiO2纳米膜异质结的形成以及Cu-PDA/TiO2与PMS之间的电子转移机制。确定了Cu-PDA/TiO2的电荷转移机制符合S型异质结,这也为利用易于回收的光催化剂激活的PMS降解有机污染物提供了新的视角。
Fig. 1. (a) illustration of the preparation processes of Cu-PDA/TiO2, (b) XRD patterns of TiO2, PDA/TiO2 and Cu-PDA/TiO2, (c) SEM image of Cu-PDA/TiO2, (d), (e) TEM and (f) HRTEM images of Cu-PDA/TiO2, (g) EDS mapping images of O, Ti, C, Cu, and N elements in Cu-PDA/TiO2.Fig. 2. (a) XPS survey spectra of Cu-PDA/TiO2. High-resolution XPS spectra of (b) Ti 2p, (c) O 1 s, (d) N 1 s, (e) C 1 s and (f) Cu 2p.Fig. 3. (a) UV − vis diffuse reflectance spectroscopy of TiO2, Cu-PDA and Cu-PDA/TiO2. (b) Bandgap energy of TiO2 and Cu-PDA, Mott-Schottky curves of (c) TiO2 and (d) Cu-PDA. (e) band structure diagram of TiO2 and Cu-PDA. (f) Transient photocurrent responses, (g) EIS plots, (h) PL spectra and (i) time-resolved fluorescence spectra of TiO2 and Cu-PDA/TiO2.Fig. 4. (a) GAT degradation performance by activating PMS with different system and the corresponding pseudo-first-order reaction kinetic, (b)reaction rate constants, (c) effects of (d) GAT concentrations, (e) PMS concentration and (f) temperature on the degradation of GAT in the system of Cu-PDA/TiO2 + PMS + Vis. (Note: All experiments were performed three times and error bars were plotted).Fig. 5. (a) Effect of pH on GAT degradation by Cu-PDA/TiO2 + PMS + Vis, (b) Zeta potential of Cu-PDA/TiO2 at different pH, (c) The degradation efficiency of GAT with different water bodies, (d) Catalytic performance of Cu-PDA/TiO2 + PMS + Vis for different organic pollutants. (Note: All experiments were performed three times and error bars were plotted).Fig. 6. GAT degradation performance by Cu-PDA/TiO2 + PMS + Vis and the corresponding reaction rate constants in the presence of various inorganic anions: (a) SO42-, (b) NO3–, (c) HPO42-, (d) HCO3– and (e) Cl-; (f) Performance of Cu-PDA/TiO2 + PMS + Vis degraded GAT under sunlight. (Note: All experiments were performed three times and error bars were plotted).Fig. 7. (a) Chemical structure and (b) HOMO of the GAT molecule, (c) Natural population analysis (NPA) charge distribution and Fukui index of GAT (Note: values are retained to four decimal places), Isosurface of Fukui index for GAT (d) f- and (e) f0.
本研究中,在FTO基底上原位生长的Cu-PDA/TiO2纳米膜异质结在活性PMS降解GAT的过程中表现出色,60分钟内有94.8%的GAT被降解。自由基淬灭实验和EPR结果表明,-OH和1O2是GAT降解过程中的主要活性物质,而DFT和反应后XPS结果表明Cu2+对催化反应的贡献。与传统的粉末光催化剂相比,Cu-PDA/TiO2更容易从环境中回收,具有很强的实际应用潜力。Cu2+也可以被PDA螯合,以减少环境浸染。最后,理论计算和原位XPS揭示了内部电场驱动的Cu-PDA/TiO2 S型异质结的形成和电荷转移机制。该研究不仅为金属离子螯合聚多巴胺的应用开辟了一条新的途径,而且为制备易回收的光催化剂激活的PMS处理水污染提供了新的方向。因此,它为今后研究易回收底物的新兴催化剂提供了重要基础。
Chunsheng Ding, Yuqing Lu, Ming Xiang, Fen Wu, Peng Chen, Wei Gan, Jun Guo, Jianrou Li, Qi Ling, Ziwei Zhao, Lei Chen, Miao Zhang, Zhaoqi Sun, Internal electric field-assisted copper ions chelated polydopamine/titanium dioxide nano-thin film heterojunctions activate peroxymonosulfate under visible light to catalyze degradation of gatifloxacin: Theoretical calculations and biotoxicity analysis, Journal of Colloid and Interface Science, 2023, https://doi.org/10.1016/j.jcis.2023.05.023
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧