第一作者:Qichi Feng, Zhen Liu
通讯作者:李倩 教授
通讯单位:山东大学环境科学与工程学院
DOI:10.1016/j.apcatb.2024.124714
本研究通过在 g-C3N4(CN)上负载 Mn3O4,构建了 p-n 异质结 Mn3O4-CN,在压电效应下有效激活亚氯酸盐降解有机污染物。压电/Mn3O4-CN/亚氯酸盐组合的磺胺甲噁唑(SMX)降解速率为 0.0346 min-1,分别比压电/CN/亚氯酸盐和 Mn3O4/ 亚氯酸盐系统高出 21.63 倍和 3.26 倍。实验验证和理论计算表明,Mn3O4-CN 具有更强的压电响应,对绿泥石的吸附(-1.682 eV)优于 CN(-0.615 eV)和 Mn3O4(-1.093 eV),有助于绿泥石的活化和污染物的高效降解。在 p-n 异质结压电活化绿泥石的过程中,Mn(II)/Mn(III)/Mn(IV)循环促进了 SMX 的降解,其中二氧化氯(ClO2)和 Mn(IV) 是主要的活性物种。此外,压电/Mn3O4-CN/亚氯酸盐体系表现出显著的稳定性、环境安全性和广泛的应用潜力。这项研究为利用机械活化亚氯酸盐高效降解水中有机污染物提供了新的见解和实用指南,推动了水处理技术的发展。
Fig. 1. (a) Schematic diagram of preparation of CN and Mn3O4-CN; (b) SEM image, (c-d) HRTEM images, and (e) EDS mapping image of Mn3O4-CN. (f) XRD patterns of CN and Mn3O4-CN catalysts; high-resolution XPS spectra of (g) C 1 s, (h) N 1 s, and (i) O 1 s of CN and Mn3O4-CN; (j) high-resolution XPS spectrum of Mn 2p of Mn3O4-CN.
Fig. 2. SMX degradation performance in different (a) catalysts/chlorite system and (b) piezo/catalysts/chlorite system. (c) Comparison of degradation rate of SMX in different systems. (d) Effect of ultrasonic powers on SMX degradation in the piezo/Mn3O4-CN/chlorite system. Experimental conditions: [catalyst]0 = 0.5 g/L, [chlorite]0 = 1 mM, [SMX]0 = 10 mg/L, pH = 6.5.
Fig. 3. (a) Effect of different quenching agents on SMX removal in the piezo/Mn3O4-CN/chlorite system. (b) UV–vis absorption spectra of the products of NBT probe. (c) Conversion rate of PMSO to PMSO2 in different systems. EPR signals for (d) DMPO-·OH, (e) DMPO-·O2–, (f) TEMP-1O2, (g) TEMPO-h+ and (h) DMPO-ClO2 in the piezo/Mn3O4-CN/chlorite system. (i) ClO2 production in different systems.
Fig. 4. (a) Surface topography images and PFM amplitudes of Mn3O4-CN. (b) Amplitude loops and phase loops of Mn3O4-CN. (c) CV plots of Mn3O4-CN; (d) EIS of CN and Mn3O4-CN. (e) piezoelectric currents in different systems. (f) UV–vis diffuse reflectance spectra. (g) valence band XPS (VB-XPS) and (h) ultraviolet photoelectron spectroscopy (UPS) spectra of CN, Mn3O4 and Mn3O4-CN. (i) Schematic diagram of band structure of CN, Mn3O4 and Mn3O4-CN samples (before contact and after contact). (j) Schematic diagram of piezoelectric catalysis of Mn3O4-CN under compressive and tensile strains.
Fig. 5. (a) Models of CN/ClO2–, Mn3O4/ClO2– and Mn3O4-CN/ClO2–. Adsorption energy and Cl-O bond length for (b) CN/ClO2–, (c) Mn3O4/ClO2– and (d) Mn3O4-CN/ClO2–. (e) The charge density difference with an isosurface value of 0.005 e/Å. (f) Charge density and charge transfer of CN and Mn3O4 adsorb chlorite. (g) Charge density and charge transfer of Mn3O4-CN adsorb chlorite. (h) DOS of different elements of Mn3O4-CN after adsorption of chlorite. (i) The mechanically mediated chlorite activation on the surface of Mn3O4-CN (reductive cleavage and homolytic cleavage of the Cl-O bond). (j) The Gibbs energy (∆G), enthalpy (∆H), and electronic energy (∆E) for the breakage of Cl-O bond in different systems. (k) Mn 2p XPS of Mn3O4-CN, Mn3O4-CN after piezo and Mn3O4-CN after reaction. (l) Mechanism of SMX degradation by a combined piezo/Mn3O4-CN/chlorite process.
Fig. 6. (a) Effect of pH on SMX degradation. (b) Effect of anions and HA on SMX degradation. (c) The degradation performance of different pollutants. (d) Cycle stability of the piezo/Mn3O4-CN/chlorite system. (e) TOC removal efficiencies in different systems. Conversion of chloride-containing ions in the piezo/Mn3O4-CN/chlorite system (f) without SMX and (g) with SMX.
本研究通过在 g-C3N4 上负载 Mn3O4 合成了 p-n 异质结 Mn3O4-CN,并同步提高了材料的压电性能和绿泥石活化性能。不同的表征分析和实验验证表明,Mn3O4-CN 异质结比 CN 和 Mn3O4 具有更好的压电响应,Mn3O4 的引入和压电催化协同促进了绿泥石的活化。压电/Mn3O4-CN/亚氯酸盐体系中 SMX 的降解率为 0.0346 min-1,分别是压电/CN/亚氯酸盐和 Mn3O4/ 亚氯酸盐体系的 21.63 倍和 3.26 倍。这是由于 Mn3O4-CN 具有更高的吸附能和更强的亚氯酸盐活化性能。此外,反应过程中特殊的 Mn(II)/Mn(III)/Mn(IV)循环进一步促进了亚氯酸盐的活化过程,Mn(IV)和 ClO2 主导了 SMX 的降解。此外,压电/Mn3O4-CN/亚氯酸盐体系具有良好的抗外界环境影响能力和循环稳定性,SMX在10次循环后仍能被降解95%以上。亚氯酸盐转化实验、毒性预测和生命周期评估分析进一步证明了该体系具有良好的环境安全性和大规模可持续应用潜力。
Qichi Feng, Zhen Liu, Ruidian Su, Yi Chen, Yan Wang, Defang Ma, Qian Li, Revealing the reaction mechanism of the novel p-n heterojunction Mn3O4-C3N4 in efficient activation of chlorite to degrade organic pollutants under piezoelectric catalysis, Applied Catalysis B: Environment and Energy, 2025, https://doi.org/10.1016/j.apcatb.2024.124714
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧