文献速递|山东大学WR:利用单原子铁位点的孔隙调制实现具有放大电子迁移氧化作用的超快类芬顿化学反应

文摘   2024-10-30 08:06   北京  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Kexin Yin

通讯作者:高宝玉 教授/高悦 副研究员

通讯单位:山东大学环境科学与工程学院

DOI:10.1016/j.watres.2024.122545









全文速览

污染物、氧化剂和单原子催化剂(SAC)表面催化位点之间的相互作用有限,这限制了水的净化效果。将催化位点封闭在多孔结构中可实现反应物的局部富集,从而优化反应动力学,但具体的调节机制仍不清楚。在此,多孔修饰的 SAC 可显著提高过一硫酸盐(PMS)的利用率和污染物降解活性。将催化位点封闭在多孔结构中可有效减少自由基(SO4-和-OH)与污染物之间的传质距离,从而改善反应性能。孔隙调节改变了表面电子结构,从而显著改善了电子迁移过程。该系统在有效氧化各种常见的新兴污染物方面显示出巨大的潜力,并表现出强大的抗环境基质干扰能力。此外,利用生命周期评估(LCA)进行的定量评估表明,pFe-SAC/PMS 系统具有卓越的环境重要性和实用性。








图文摘要







引言

本文以木质素为碳源,高岭石为硬模板,制备了一种具有 Fe-N5 活性位点的孔工程修饰铁单原子催化剂(pFe-SAC)。通过去除磺胺甲噁唑(SMX),评估了 pFe-SAC 对 PMS 活化的催化性能。通过自由基捕获实验、电子顺磁共振(EPR)分析和竞争动力学实验确定了 Fenton-like 系统中的反应机理,展示了多孔结构的引入所产生的效果。液相色谱-质谱(LC-MS)和三维激发发射矩阵荧光光谱(3DEEM)揭示了可能的降解途径和实际应用潜力。此外,pFe-SAC 还被成功应用于三种不同的连续流膜催化反应系统中,显示出卓越的催化活性和长期稳定性。利用生命周期评估(LCA)对 pFe-SAC/PMS 系统的环境意义和可行性进行了定量评估。这将有助于了解通过孔隙工程调节单原子位点的作用,并为制备适合实际应用的高催化性能多孔 SAC 提供技术指导。





同位素标记技术

图文导读

Fig. 1(a) Synthesis route for pFe-SAC. (b-c) HAADF-STEM image and corresponding EDS mappings of pFe-SAC and Fe-SAC. (d) Normalized Fe K-edge XANES. (e) WT plots of EXAFS spectrum. (f) EXAFS fitting curves of pFe-SAC and Fe-SAC at Fe K-edge in the R space. (g) TEM image of different catalysts. (h) XRD of different catalysts. (i) Fe content and BET surface area of different catalysts.

Fig. 2(a) PMS decomposition and SMX removal efficiencies in these catalysts/PMS systems. (b) The kSMX and kPMS in these catalysts/PMS systems. (c) The kSMX in pFe-SAC/PMS system compared with other SACs reported in literatures. (d) Effects of different radical scavengers on the degradation of SMX in these catalysts/PMS systems. (e) The kSMX values of SMX oxidation in H2O and D2O solutions. (f) TEMP-1O2 and DMPO-•OH, SO4•− signals in these catalysts/PMS systems. (g) PMSO consumption and PMSO2 generation in these catalysts/PMS systems. (h) The oxidation of trans-stilbene in these catalysts/PMS systems. (i) Oxidation of trans-stilbene in these catalysts/PMS systems with/without the addition of SMX. (SMX: = 10 mg/L; trans stilbene: 1.0 mM; PMSO: 25 μM; catalysts = 0.1 g/L; PMS = 1.0 mM).

Fig. 3(a) OCP changes of different catalysts coated electrode after adding PMS and SMX. (b) The i-t curves of different catalysts with the addition of PMS and SMX. (c) EIS of different catalysts. (d) The scheme of GOS. (e) The current in GOS coating with different catalysts. (f) The LC-MS spectrum of SMX in the pFe-SAC based GOS system. (g) Electrochemical property of different catalysts. (h) OCP changes of pFe-SAC with the addition of different pollutants. (i) Linear correlation between the ln(kobs) and their potentials changes.

Fig. 4(a) ELF of Fe-N5 and N5 sites (Blue and red colors represent electron delocalization and localization, respectively). (b) Charge density difference of PMS adsorbed on Fe-N5 and N5 sites (Blue and green colors indicate electron depletion and accumulation, respectively). (c) Gaps between LUMO of Fe-N5/PMS or N5/PMS and HOMO of SMX. (d) Gap between LUMO(Fe-N5/PMS) and HOMOpollutants. (e) Linearity between LUMO(Fe-N5/PMS)-HOMOpollutants and ln(kobs). (f-g) Energy barriers associated with the generation of radicals at Fe-N5 sites. (h) The reaction mechanism in pFe-SAC/PMS system.

Fig. 5(a) Optimized SMX molecular structure, Fukui index (f-) and electrostatic potential of SMX molecule. (b) Degradation pathways of SMX in the pFe-SAC/PMS system. (c) ChV evaluation (≈based on the fish, daphnid, and green algae estimation) of these catalysts/PMS systems. (d) 3DEEM of the SMX solution before and after degradation in these catalysts/PMS systems. (e) Catalytic performances of pFe-SAC towards SMX in different water matrixes. (f) Catalytic performances of pFe-SAC towards SMX in different pH.

Fig. 6(a) Photograph of the continuous flow degradation experiment with a schematic diagram. (b)AFM and SEM of these organic membrane surfaces. (c) SEM of these catalytic membrane cross sections. (d) The contact angle of these different membranes. (e) The water flux of these different membranes. (f) Pollutants removal in different membrane continuous flow wastewater treatment systems. (g) The removal of various pollutants in the pFe-SAC@PTFE continuous flow system. (h) Catalytic scheme of these pFe-SAC@M continuous flow systems. (i) LCA for the complete water treatment cycle of pFe-SAC/PMS system. (coated catalysts: 1 mg/cm2; pollutants: 500 μg/L, PMS: 2.0 mM).








研究意义

有效调节 SAC 的结构特征以实现抗干扰性能和超快的类芬顿反应仍然是一项具有挑战性的任务。为了解决这个问题,我们制备了具有铁原子位点和多孔结构的 pFe-SAC 来激活 PMS,其性能超过了大多数最先进的单原子催化剂/PMS 系统。多孔结构的引入提高了反应物的富集度,缩短了传质距离,优化了反应动力学。此外,它还能有效减轻电荷转移阻力,增强电子转移能力,从而显著提高 ETP 和类 Fenton 系统的效率。pFe-SAC 具有很强的抗环境基质干扰能力。通过将 pFe-SAC 加载到三种有机膜上,开发出了一种连续废水处理系统,在 10 小时内实现了 100% 的污染物去除率,这证明了 pFe-SAC 在实际应用中的广泛潜力。生命周期评估的定量分析证明,pFe-SAC/PMS 系统具有良好的环境可持续性和实用性。这项研究全面揭示了多孔结构在调节 SAC 的活化机制和增强其抗氧化能力方面所起的关键作用,从而为进一步改进催化剂设计和提高先进废水处理技术的性能提供了宝贵的启示。


文献信息

Kexin Yin, Xing Xu, Qinyan Yue, Yanan Shang, Yanwei Li, Yue Gao, Baoyu Gao, Pore modulation of single atomic Fe sites for ultrafast Fenton-like chemistry with amplified electron migration oxidation, Water Research, 2025, https://doi.org/10.1016/j.watres.2024.122545



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧




水处理文献速递
分享水处理相关的前沿科学成果
 最新文章