[1] Singh VK, Seed TM. A review of radiation countermeasures
focusing on injury-specific medicinals and regulatory approval
status: part I. Radiation sub-syndromes, animal models and
FDA-approved countermeasures[J]. Int J Radiat Biol, 2017,
93(9):851-869. DOI: 10.1080/09553002.2017.1332438.
[2] Bell BI, Vercellino J, Brodin NP, et al. Orthovoltage X-rays
Exhibit increased efficacy compared with γ-rays in preclinical
irradiation[J]. Cancer Res, 2022, 82(15):2678-2691. DOI: 10.1158/
0008-5472.
[3] Zhu W, Zhang X, Yu M, et al. Radiation-induced liver injury
and hepatocyte senescence[J]. Cell Death Discov, 2021, 7(1):
244. DOI: 10.1038/s41420-021-00634-6.
[4] Li T, Cao Y, Li B, et al. The biological effects of
radiation-induced liver damage and its natural protective
medicine[J]. Prog Biophys Mol Biol, 2021, 167: 87-95. DOI:
10.1016/j.pbiomolbio.2021.06.012.
[5] De La Pinta Alonso C. Radiation-induced liver disease in the era of SBRT: a review[J]. Expert Rev Gastroenterol Hepatol, 2020,
14(12):1195-1201. DOI: 10.1080/17474124.2020.1814744.
[6] 王依婷, 江杰, 马丽, 等 . 间充质干细胞及其衍生物对供肝修复的潜在价值[J]. 器官移植, 2023, 14(4):592-597. DOI: 10.3969/j.issn.1674-7445.2023.04.017.
[7] Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal
stem cell perspective: cell biology to clinical progress[J]. NPJ
Regen Med, 2019, 4:22. DOI: 10.1038/s41536-019-0083-6.
[8] Shi M, Li YY, Xu RN, et al. Mesenchymal stem cell therapy in
decompensated liver cirrhosis: a long-term follow-up analysis of
the randomized controlled clinical trial[J]. Hepatol Int, 2021,
15(6):1431-1441. DOI: 10.1007/s12072-021-10199-2.
[9] Huang YJ, Chen P, Lee CY, et al. Protection against
acetaminophen-induced acute liver failure by omentum
adipose tissue derived stem cells through the mediation of
Nrf2 and cytochrome P450 expression[J]. J Biomed Sci, 2016,
23:5. DOI: 10.1186/s12929-016-0231-x.
[10] Nowlan B, Futrega K, Williams ED, et al. Human bone
marrow-derived stromal cell behavior when injected directly
into the bone marrow of NOD-scid-gamma mice pre-conditioned with sub-lethal irradiation[J]. Stem Cell Res Ther, 2021, 12(1):231. DOI: 10.1186/s13287-021-02297-7.
[11] 刘凡凤, 邱慧颖, 解琳娜, 等 . 骨髓间充质干细胞移植重建极重度放射损伤小鼠造血功能[J]. 第二军医大学学报, 2008,29(9):1015-1019. DOI:10.3321/j.issn:0258-879X.2008.09.002.
[12] Damm R, Pech M, Haag F, et al. TNF-α indicates
radiation-induced liver injury after interstitial high dose-rate
brachytherapy[J]. In Vivo, 2022, 36(5):2265-2274. DOI: 10.21873/
invivo.12955.
[13] Li W, Wang X, Dong Y, et al. Nicotinamide riboside
intervention alleviates hematopoietic system injury of ionizing
radiation-induced premature aging mice[J]. Aging Cell, 2023,
22(11):e13976. DOI: 10.1111/acel.13976.
[14] Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing
radiation as a source of oxidative stress-The protective role of
melatonin and vitamin D[J]. Int J Mol Sci, 2020, 21(16):5804.
DOI: 10.3390/ijms21165804.
[15] Huang ZN, Wang ZY, Cheng XF, et al. Melatonin alleviates
oxidative stress-induced injury to nucleus pulposus-derived
mesenchymal stem cells through activating PI3K/Akt pathway
[J]. J Orthop Translat, 2023, 43:66-84. DOI: 10.1016/j.jot.2023.10.002.
[16] 蔡丽娜, 张素芬, 黄伟旭, 等 . 不同剂量 X 射线诱导小鼠肝损
伤中氧化应激水平及其与核因子-κB 和转化生长因子-β1 的
相关 性 [J]. 环境 与 职 业 医 学 , 2023, 40(2): 202-208. DOI:
10.11836/JEOM22319.
[17] Zhang L, Ma XJ, Fei YY, et al. Stem cell therapy in liver
regeneration: focus on mesenchymal stem cells and induced
pluripotent stem cells[J]. Pharmacol Ther, 2022, 232:108004.
DOI: 10.1016/j.pharmthera.2021.108004.
[18] Liu FY, Shi M, Li X, et al. MRI/PAI dual-modal
imaging-guided precise tracking of bone marrow-derived
mesenchymal stem cells labeled with nanoparticles for treating
liver cirrhosis[J]. J Clin Transl Hepatol, 2023, 11(2):382-392.
DOI: 10.14218/JCTH.2021.00580.
[19] Yadav P, Singh SK, Rajput S, et al. Therapeutic potential of
stem cells in regeneration of liver in chronic liver diseases:
current perspectives and future challenges[J]. Pharmacol Ther,
2024, 253:108563. DOI: 10.1016/j.pharmthera.2023.108563.
[20] 纪卫政, 马艳, 温浩 . 骨髓间充质干细胞移植急性放射性肝
损伤大鼠 α-平滑肌肌动蛋白的表达[J]. 中国组织工程研究
与临床康复, 2010,14(36):6744-6750. DOI:10.3969/j.issn.1673-
8225.2010.36.021.
[21] Sarvar DP, Effatpanah H, Akbarzadehlaleh P, et al. Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation[J]. Stem Cell Res Ther, 2022, 13(1):202. DOI: 10.1186/s13287-022-02875-3.
[22] Asgari R, Mehran YZ, Weber HM, et al. Management of
oxidative stress for cell therapy through combinational approaches of stem cells, antioxidants, and photobiomodulation[J]. Eur J Pharm Sci, 2024, 196:106715. DOI: 10.1016/j.ejps.2024.106715.
[23] Jiang W, Tan Y, Cai M, et al. Human umbilical cord MSC-derived exosomes suppress the development of CCl4-induced
liver injury through antioxidant effect[J]. Stem Cells Int, 2018,
2018:6079642. DOI: 10.1155/2018/6079642.
[24] Zhang W, Wang T, Xue Y, et al. Research progress of
extracellular vesicles and exosomes derived from mesenchymal
stem cells in the treatment of oxidative stress-related diseases
[J]. Front Immunol, 2023, 14:1238789. DOI: 10.3389/fimmu.
2023.1238789.
[25] Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2
system: a thiol-based sensor-effector apparatus for maintaining
redox homeostasis[J]. Physiol Rev, 2018, 98(3):1169-1203.
DOI: 10.1152/physrev.00023.2017.
[26] Liu S, Pi J, Zhang Q. Signal amplification in the
KEAP1-NRF2-ARE antioxidant response pathway[J]. Redox
Biol, 2022, 54:102389. DOI: 10.1016/j.redox.2022.102389.
[27] Crisman E, Duarte P, Dauden E, et al. KEAP1-NRF2
protein-protein interaction inhibitors: design, pharmacological
properties and therapeutic potential[J]. Med Res Rev, 2023,
43(1):237-287. DOI: 10.1002/med.21925.
[28] Wang T, Jian Z, Baskys A, et al. MSC-derived exosomes
protect against oxidative stress-induced skin injury via adaptive
regulation of the NRF2 defense system[J]. Biomaterials, 2020,
257:120264. DOI: 10.1016/j.biomaterials.2020.