冠状动脉计算机断层扫描血管造影临床应用新进展

健康   2024-11-01 16:30   北京  

冠状动脉疾病(CAD)是一种病理生理条件,其中动脉粥样硬化斑块积聚在冠状动脉中[1]。根据狭窄的严重程度,冠心病分为阻塞性和非阻塞性冠心病[管腔狭窄<50%的有创性冠状动脉造影(ICA)],或根据临床病程分为稳定型冠心病和急性冠状动脉综合征(ACS)。

患有稳定型冠心病的患者可能会出现胸部症状,如因冠状动脉狭窄引起的心肌缺血而在用力时胸痛[1,2]。ACS可能发生在患有梗阻性冠心病和非梗阻性冠心病的患者中。生活方式调整、药物治疗和血运重建是稳定或改善冠心病的有效措施,冠心病的严重程度和风险评估对于为每位患者提供最佳治疗干预非常重要。

冠状动脉计算机断层摄影血管造影(CCTA)被广泛用作冠心病评估的成像工具[1-3]。本文将回顾CCTA的主要试验和指南,以了解其临床作用。




1



稳定型冠心病

冠心病是一种病理生理学疾病,其特征是冠状动脉粥样硬化的积聚,冠状动脉粥样硬化最初无症状地进展,并由于斑块进展和管腔狭窄导致心肌灌注减少[4]。冠状动脉和微血管网调节心肌灌注,即使在管腔狭窄80%的情况下,通过扩张微血管也能维持静息心肌灌注[5]。随着冠状动脉管腔狭窄的恶化,冠状动脉无法提供足够的心肌血流量来满足心肌氧需求,导致运动时心肌缺血[5]。


1.1 CCTA的诊断性能

在一项荟萃分析中,使用管腔狭窄≥50%的ICA作为参考标准,比较了CCTA与运动心电图(ECG)和单光子发射计算机断层扫描(SPECT)的诊断性能,CCTA的灵敏度为95~99%,特异性为68~93%,阳性预测值(PPV)为75~93%,阴性预测值(NPV)为96~99%,表明其诊断性能高于运动心电图或SPECT[6]。另一项荟萃分析报告称,当ICA≥50%用作参考标准时,CCTA的敏感性为97%,特异性为78%,阳性似然比(PLR)为4.44,阴性似然比(NLR)为0.04,低阴性似然比表明CCTA有助于排除梗阻性冠心病[7]。然而,心肌缺血并不总是与冠状动脉狭窄共存。对没有心肌缺血的患者进行血管重建可能会恶化预后;因此,心肌缺血的评估很重要[8,9]。用于评估心肌缺血的传统非有创性工具包括SPECT、心脏磁共振(CMR)和正电子发射断层扫描(PET)。此外,血流储备分数(FFR)是一种通过ICA测量的有创性工具,用于评估血流动力学意义上的狭窄[10]。当FFR≤0.8用作参考标准时,CCTA的灵敏度为93%,特异性为53%,阳性似然比为1.97,阴性似然比为0.13,表明CCTA在检测心肌缺血方面的诊断性能不如应激CMR、SPECT和PET[7],而CCTA在诊断梗阻性冠心病方面表现出高灵敏度[6,7,11-16]。

已经开发了CCTA和CT衍生血流储备分数(CT-FFR)或应力CT灌注(CTP)的组合,以克服CCTA在评估心肌缺血方面的诊断性能不足[17,18]。CT-FFR可以使用计算流体动力学从CCTA数据中计算[19]。在一项涉及疑似冠心病患者(n=505支血管)的心脏PET/CT、SPECT/CT灌注成像和CCTA与ICA的(PACIFIC)试验的前瞻性对比研究中,CT-FFR、CCTA、SPECT和PET诊断每支血管血流动力学显著狭窄(FFR≤0.8)的敏感性和特异性分别为90%和86%、68%和83%、42%和97%以及81%和76%[20]。在每支血管分析中,CT-FFR的曲线下面积(AUC)(0.94)显著高于CCTA(0.83)、SPECT(0.70)和PET(0.87),表明CT-FFR对血流动力学显著狭窄的诊断性能高于CCTA[20]。CTP还可以通过在休息和药理学应激下采集图像来检测心肌缺血[19]。在Celeng等[18]的荟萃分析中,单用CCTA诊断每支血管血流动力学显著狭窄(FFR≤0.8)的敏感性和特异性分别为87%和61%,CCTA加负荷CTP的敏感性和特异性分别为82%和88%。与单独使用CCTA相比,CCTA和CTP的组合可以提高心肌缺血的诊断性能(尤其是特异性)。

此外,PERFECTION研究调查了冠心病预测概率低至中等的有症状患者(n=147),结果表明,在CCTA中添加CTP和CT-FFR提供了增量诊断价值,提高了识别血流动力学显著狭窄的特异性(FFR≤0.8,ICA>80%直径狭窄,或作为参考标准的完全闭塞)[21]。CTP或CT-FFR与CCTA联合使用可改善血流动力学显著狭窄的识别[18,21-24]。


1.2 CCTA的预后价值

PROMISE试验比较了使用CCTA的初步解剖测试与初步功能测试(运动心电图、核素应力测试或应力超声心动图)在疑似冠心病的有症状患者(n=10 003)中的效果[25]。在2.1年的中位随访期间,CCTA第一组和功能测试第一组的临床结果[死亡、心肌梗死(MI)、不稳定型心绞痛住院或主要手术并发症]没有显著差异(3.3%对3.0%;调整后的风险比[HR]=1.04,P=0.75])。SCOT-Heart试验中,对稳定胸痛患者(n=4 146)进行了中位4.8年的随访,标准治疗加CCTA组的冠状动脉死亡率和非致命性MI发生率低于标准治疗组(5年率2.3%比3.9%;HR=0.59,P=0.004),尽管在有创性治疗或血运重建的频率上没有观察到显著差异[26]。DISCHARGE试验比较了CCTA和ICA作为阻塞性冠心病中期预测概率患者(n=3 561)的初始诊断成像策略,中位随访时间为3.5年[27]。CCTA组和ICA组显示出类似的主要不良心血管事件(MACE)风险(心血管死亡、非致命性MI、非致死性卒中)(2.1%对3.0%,HR=0.70)。相比之下,初始CCTA策略与初始ICA策略相比,主要手术相关并发症的风险较低(0.5%对1.9%,HR=0.26)[27]。


1.3 指南

2019年欧洲心脏病学会(ESC)慢性冠状动脉综合征指南建议,当临床上不能排除梗阻性冠心病时,CCTA为1级/B级证据[1]。2021年AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR胸痛指南还建议CCTA为1级/A级证据,适用于胸痛稳定且无已知冠心病的中高危患者[2]。此外,2022年日本循环学会(JCS)针对稳定型冠状动脉疾病的更新建议将CCTA作为稳定型胸痛中高危患者的1级/A级证据[28]。这是日本根据ISCHEMIA试验的国际健康疗效比较研究结果制定的第一条指导方针。在ISCHEMIA试验中,没有左主干冠状动脉(LMCA)病变的中重度缺血患者被分为初始有创性策略和药物治疗或保守策略。在3.2年的中位随访期间,缺血性心血管事件或死亡的发生率没有显著差异[29]。缺血扩展试验表明,与初始保守策略相比,初始有创策略的心血管死亡率较低;然而,在5.7年的中位随访期间,两种策略的总体死亡率没有显著差异[30]。基于ISCHEMIA试验,2022年针对稳定冠心病的JCS重点更新指出,LMCA/LMCA等效物的存在与否是报告的最重要方面,因为它对CCTA下一步的选择有重大影响[28,29]。如果有LMCA/LMCA等效物,建议使用ICA。如果存在LMCA/LMCA等效物以外的梗阻性冠心病,建议进行应力成像或CT-FFR以进行进一步的风险评估,然后建议优化药物治疗[28]。在2022年JCS重点更新稳定冠心病的背景下,证明心肌缺血的主要目标现在集中在风险评估上,而不是作为血运重建的基础。




2



急性冠状动脉综合征(ACS)

ACS发生在斑块破裂和血栓快速闭塞后,可能发生在阻塞性和非阻塞性冠心病患者中[31]。根据心电图ST段抬高的存在与否,ACS分为ST段抬高型心肌梗死(STEMI)或非ST段抬高性ACS(NSTE-ACS)。根据是否存在心肌细胞损伤,NSTE-ACS进一步分为非ST段抬高型心肌梗死(NSTEMI)或不稳定型心绞痛[31,32]。


2.1 ACS患者CCTA的证据

ROMICAT-II试验将疑似ACS的患者(n=1 000)随机分为早期CCTA或标准急诊室(ED)评估组(随访期:28天)[33]。早期CCTA组的患者平均住院时间比标准急诊室评估组短7.6小时(P<0.001)。在早期CCTA组中,与标准急诊室评估组相比,直接从急诊室出院的患者比例更高(47%对12%)。此外,在28天内,早期CCTA或标准急诊室评估组之间的MACE(死亡、MI、不稳定型心绞痛和紧急冠状动脉重建)没有显著差异。CT-STAT试验将低风险胸痛患者(n=699)随机分为早期CCTA或心肌灌注成像(MPI)组[34]。早期CCTA组的诊断时间比MPI组显著缩短(中位数为2.9小时对6.3小时;P<0.0001)。

此外,在6个月的随访期间,早期CCTA和MPI组的MACE(ACS、心源性死亡和血运重建)没有观察到显著差异。在最近一项VERDICT试验早期与延迟有创性评估试验的子研究中,CCTA在排除NSTE-ACS狭窄患者的梗阻性冠状动脉疾病(ICA≥50%狭窄)方面表现出了很高的诊断性能,敏感性为96.5%,特异性为72.4%,净现值为90.9%,阳性预测值为87.9%[35]。


2.2 指南

2020年ESC的NSTE-ACS指南建议,对于检测前概率低至中等、肌钙蛋白阴性和/或心电图结果不确定的患者,使用CCTA代替ICA作为1级/A级证据[32]。2021年AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR胸痛指南还建议CCTA为1级/A级证据,用于中等风险患者的临床阴性或不确定的ACS发现[2]。2018年JCS指南还建议,对于心电图无变化且血液化学检测呈阴性的临床低至中等风险患者,CCTA为2A级[3]。




3



非阻塞性冠状动脉心肌梗死(MINOCA)

随着高灵敏度肌钙蛋白和诊断成像的发展,以及ACS急诊ICA的广泛使用,提出了非阻塞性冠状动脉心肌梗死(MINOCA)和非阻塞性冠心病缺血(INOCA)等新概念[2,32,36,37]。急性胸痛和肌钙蛋白阳性但没有阻塞性冠心病证据的患者最初被诊断为MINOCA。然而,在这个阶段,除了作为最终诊断的MINOCA外,各种病理状况都是混合的。当MI是由冠状动脉疾病引起的,如心外膜冠状动脉痉挛、微血管痉挛、微动脉功能障碍和冠状动脉病变时,患者被诊断为MINOCA作为最终诊断[32,36]。在MINOCA诊断过程中,CCTA可用于排除阻塞性冠状动脉疾病和诊断自发性冠状动脉夹层[38,39]。

此外,当在视野扩大的情况下进行三重排除扫描时,CT可用于诊断肺栓塞和主动脉夹层。最近,CCTA可以像MRI一样使用心肌CT晚期增强(CT LE)和细胞外容积分数(ECV)来评估心肌损伤[40]。将CT-LE/ECV添加到CCTA/三重排除CT中,可以对冠状动脉狭窄、主动脉病变、肺栓塞和心肌纤维化进行一站式评估[41]。CCTA/三重排除CT和CT-LE/ECV扫描的结合可能对MINOCA的诊断过程有用。




4



非阻塞性冠心病缺血(INOCA)

INOCA被定义为①与心肌缺血相关的临床症状,②无梗阻性冠心病(直径狭窄<50%或血流储备分数>0.80),以及③心肌缺血的客观证据[36,37]。INOCA的主要机制是心外膜冠状动脉的血管痉挛和冠状动脉微血管功能障碍,包括微血管痉挛、微血管阻力增加、慢血流现象和微血管血管舒张功能障碍[36]。

对于疑似INOCA的病例,将进行CCTA以排除心外膜冠状动脉的严重狭窄[36,37]。JCS/CVIT/JCC 2023年指南《血管痉挛性心绞痛(冠状动脉痉挛型心绞痛)和冠状动脉微血管功能障碍的诊断和治疗重点更新》建议将CCTA视为疑似血管痉挛性心绞痛患者的IIa/证据等级C[36]。目前,13N氨PET和负荷心肌灌注MRI被推荐为评估冠状动脉微血管功能受损的无创方法[2,36]。最近,Schuijf等[42]报告称,CCTA和CTP的组合可用于诊断INOCA,CCTA与CTP的组合可能可用于INOCA的诊断过程。


小 结

随着技术的发展,CCTA的潜在应用从稳定的冠心病扩展到ACS和MINOCA/INOCA。然而,由于CCTA的局限性,如辐射暴露和与造影剂相关的风险,确保其适用于适当的患者非常重要。


参考文献

1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, FunckBrentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. 

2. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/ SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;144:e368–454. 

3. Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, et al. JCS 2018 guideline on diagnosis of chronic coronary heart diseases. Circ J. 2021;85:402–572. 

4. Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, et al. CAD-RADS™ 2.0—2022 coronary artery disease-reporting and data system: an expert consensus document of the society of cardiovascular computed tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2022;16:536–57. 

5. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous fow response and regional distribution during coronary hyperemia as measures of coronary fow reserve. Am J Cardiol. 1974;33:87–94. 

6. Nielsen LH, Ortner N, Nørgaard BL, Achenbach S, Leipsic J, Abdulla J. The diagnostic accuracy and outcomes after coronary computed tomography angiography vs. conventional functional testing in patients with stable angina pectoris: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15:961–71. 

7. Knuuti J, Ballo H, Juarez-Orozco LE, Saraste A, Kolh P, Rutjes AWS, et al. The performance of non-invasive tests to rule-in and rule-out signifcant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. Eur Heart J. 2018;39:3322–30. 

8. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival beneft associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7. 

9. Sud M, Han L, Koh M, Austin PC, Farkouh ME, Ly HQ, et al. Association between adherence to fractional fow reserve treatment thresholds and major adverse cardiac events in patients with coronary artery disease. JAMA. 2020;324:2406–14. 

10. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, et al. Measurement of fractional fow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8. 

11. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCU RAC Y (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52:1724–32. 12. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44. 

13. Marano R, De Cobelli F, Floriani I, Becker C, Herzog C, Centonze M, et al. Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-non invasive multicenter Italian study for coronary artery disease). Eur Radiol. 2009;19:1114–23. 

14. Arbab-Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcifcation. The CORE-64 (coronary artery evaluation using 64-row multidetector computed tomography angiography) international multicenter study. J Am Coll Cardiol. 2012;59:379–87. 

15. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, AguadéBruix S, et al. Detection of signifcant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015;8: e002179. 

16. Budof MJ, Li D, Kazerooni EA, Thomas GS, Mieres JH, Shaw LJ. Diagnostic accuracy of noninvasive 64-row computedtomographic coronary angiography (CCTA) compared with myocardial perfusion imaging (MPI): the PICTURE study, a prospective multicenter trial. Acad Radiol. 2017;24:22–9. 

17. Zhuang B, Wang S, Zhao S, Lu M. Computed tomography angiography-derived fractional fow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional fow reserve as reference: systematic review and meta-analysis. Eur Radiol. 2020;30:712–25. 

18. Celeng C, Leiner T, Maurovich-Horvat P, Merkely B, de Jong P, Dankbaar JW, et al. Anatomical and functional computed tomography for diagnosing hemodynamically signifcant coronary artery disease: a meta-analysis. JACC Cardiovasc Imaging. 2019;12:1316–25. 

19. Tanabe Y, Kurata A, Matsuda T, Yoshida K, Baruah D, Kido T, et al. Computed tomographic evaluation of myocardial ischemia. Jpn J Radiol. 2020;38:411–33. 

20. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional fow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. 2019;73:161–73. 

21. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, et al. Stress computed tomography perfusion versus fractional fow reserve CT derived in suspected coronary artery disease: the PERFECTION study. JACC Cardiovasc Imaging. 2019;12:1487–97. 

22. Hamon M, Geindreau D, Guittet L, Bauters C, Hamon M. Additional diagnostic value of new CT imaging techniques for the functional assessment of coronary artery disease: a meta-analysis. Eur Radiol. 2019;29:3044–61. 

23. Pontone G, Guaricci AI, Palmer SC, Andreini D, Verdecchia M, Fusini L, et al. Diagnostic performance of non-invasive imaging for stable coronary artery disease: a meta-analysis. Int J Cardiol. 2020;300:276–81. 

24. Kitagawa K, Nakamura S, Ota H, Ogawa R, Shizuka T, Kubo T, et al. Diagnostic performance of dynamic myocardial perfusion imaging using dual-source computed tomography. J Am Coll Cardiol. 2021;78:1937–49. 

25. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et  al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300. 

26. Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924–33. 

27. Maurovich-Horvat P, Bosserdt M, Kofoed KF, Rieckmann N, Benedek T, Donnelly P, et al. CT or invasive coronary angiography in stable chest pain. N Engl J Med. 2022;386:1591–602. 

28. Nakano S, Kohsaka S, Chikamori T, Fukushima K, Kobayashi Y, Kozuma K, et al. JCS 2022 guideline focused update on diagnosis and treatment in patients with stable coronary artery disease. Circ J. 2022;86:882–915. 

29. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407. 

30. Hochman JS, Anthopolos R, Reynolds HR, Bangalore S, Xu Y, O’Brien SM, et al. Survival after invasive or conservative management of stable coronary disease. Circulation. 2023;147:8–19. 

31. Kimura K, Kimura T, Ishihara M, Nakagawa Y, Nakao K, Miyauchi K, et al. JCS 2018 guideline on diagnosis and treatment of acute coronary syndrome. Circ J. 2019;83:1085–196. 

32. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289–367. 

33. Hofmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299–308. 

34. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58:1414–22. 

35. Linde JJ, Kelbæk H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J, et al. Coronary CT angiography in patients with nonST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2020;75:453–63. 

36. Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, et al. JCS/CVIT/JCC 2023 guideline focused update on diagnosis and treatment of vasospastic angina (coronary spastic angina) and coronary microvascular dysfunction. Circ J. 2023;87:879–936. 

37. Kunadian V, Chiefo A, Camici PG, Berry C, Escaned J, Maas A, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. Eur Heart J. 2020;41:3504–20. 

38. Pasupathy S, Tavella R, Beltrame JF. The what, when, who, why, how and where of myocardial infarction with non-obstructive coronary arteries (MINOCA). Circ J. 2016;80:11–6. 

39. Gupta S, Meyersohn NM, Wood MJ, Steigner ML, Blankstein R, Ghoshhajra BB, et al. Role of coronary CT angiography in spontaneous coronary artery dissection. Radiol Cardiothorac Imaging. 2020;2: e200364. 

40. Han D, Lin A, Kuronuma K, Gransar H, Dey D, Friedman JD, et al. Cardiac computed tomography for quantifcation of myocardial extracellular volume fraction: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2023;16(10):1306–17. 

41. Palmisano A, Vignale D, Tadic M, Moroni F, De Stefano D, Gatti M, et  al. Myocardial late contrast enhancement CT in troponin-positive acute chest pain syndrome. Radiology. 2022;302:545–53. 

42. Schuijf JD, Matheson MB, Ostovaneh MR, Arbab-Zadeh A, Kofoed KF, Scholte A, et al. Ischemia and no obstructive stenosis (INOCA) at CT angiography, CT myocardial perfusion, invasive coronary angiography, and SPECT: the CORE320 study. Radiology. 2020;294:61–73.


-END-



来源:好医术心学社

循环界
循环界,为您提供学会动态、专家采访、会议报道、会议直播等高质量的医学信息和专业知识。
 最新文章