若将“数列求和”可视化:那么,小学生也能弄懂高中公式啦!

文摘   2025-01-16 06:01   北京  

一、数列是什么?


它指的是一组按照一定顺序排列的数。


可以是有限的,也可以是无限的。


比如:


  • 1.2.3.4.5.6.……100就是一个有限数列。


  • 而1.2.3.4.5.6……n。n趋向于∞的话,这就是一个无限数列。


通常大学之前我们接触的都是有限数列。


n可以非常大,但再大也是有限的——


因为无限是个很抽象的概念,数学高等数学范畴。




二、数列难吗?


挺难的。


通常高考的压轴题都是数列问题。


不是数列跟函数结合,就是数列跟概率结合。


大部分孩子一问也答不出来。

为什么?

因为数列很抽象。

当很多数字放在一起的时候:

  • 你需要去推理它们的关系;
  • 总结它们的规律;
  • 运用规律发现新的规律……

用数学圈流行的一句话就是:
我喜欢数学,但我讨厌数论。
(数列其实属于数论的范畴)

没有推理能力,只靠总结题型是很难做出来的——高中的题目千变万化,总有你没见过的题型呢!

学数列的关键是,弄懂概念,弄明白。

之后再是推理——

能推出来就推出来,推不出来就做别的题,毕竟考场上咱是要抢分抢时间的。

而要弄懂概念,可视化是个好工具。


三、数列的可视化

我们看,下面这个是一个普通的等差数列。


我们可以用方块来表示数。


那么,相加,再把这些方块放在一起。



是不是快看出眉目了?

找个动图,更出色地显示一下。


于是,我们就得到等差数列的求和公式。


再看一个数列。

立方和数列相加。


其实,还有一种方法。


第二种方法的结果再经过化简就是第一种了。



下面我们再看平方和数列。


还有我们经常见的,也是考试重点的等比数列。


这样可视化之后,连小学生也能明白到底是怎么回事了。

当然小学生不会有高考那么难的题目。

不过,小学生也是会有压轴题的。

还有奥数题目。


通常这种题目都会让小学生试着找数列的规律,写出下一项。

还会让小学生求数列的和。


一般是自然数列和、奇数和、偶数和。


自然数和我们前面说过,也就是一个公差为1的等差数列。

奇数列和偶数列其实也是等差数列,公差为2而已。

只不过由于其特殊性,我们可以再建构一个几何模型。


其实通过推理也是可以得出来的。


同理,奇数列求和也可以这样算。


我们建立一个模型,更形象地演示一下。



现在很多老师在讲课的时候,会用图形演示公式。

这样更直观地让孩子理解公式,然后运用的时候也能用得更流畅,更能举一反三。

最近我一直在研究这部分内容。

后续会陆续发一些收获出来,咱们一起学习。



这就是本期的分享了,谢谢阅读,本文结束。

丽丽xyz
这不是一个数学大师的号,不过是一个小白的学习过程。
 最新文章