Aaron PV 笔记
读完需要
速读仅需 2 分钟
/ n-TOPCon 背面塔基形貌影响 /
关键词:背抛光、粗糙度、接触电阻率、栅线高宽
关键结论
背面金字塔塔基腐蚀量与碱洗时间正相关,初始腐蚀速率较低,之后随时间增大,有个饱和最大腐蚀速率 碱洗时间越长,塔基越大,粗糙度越低,斜面Si(111)量越少 随着粗糙度的降低,iVoc增加,初始增加幅度较大,粗糙度降低到一定程度后,iVoc基本不变 粗糙度影响金半接触电阻率,原因为比表面大相对掺杂量高 粗糙度与栅线高宽比呈正相关,保持一定粗糙度可以提升栅线高宽比 综合粗糙度对iVoc、接触电阻率影响,对于效率有个最佳粗糙度,权衡Voc vs FF
实验方案
硅片:210x210 mm尺寸,厚度~160 μm,电阻率 0.5 Ω·cm,1 Ω·cm 常规碱制绒 碱抛光:3.4% KOH + 0.93%抛光剂(增加表面活性),~ 80℃ 抛光时间:170s vs 230s vs 300s POLO结构:~ 2nm SiOx/ ~100 nm 磷掺杂poly-Si,PECVD方式 晶化退火:860℃,~20 ℃ 正面SiNx ~85 nm,背面 ~ 100nm 丝印:12BB-128 finger正面/168 fingers背面
量仪
WCT120 SEM 3D显微镜 LSCM,LEXT OLS5100 TLM
结果讨论
POLO结构:
钝化性能,饱和电流密度可降至 < 5fA/cm2(抛光片) 接触电阻率 < 10 mΩ·cm2 (抛光片)
绒面结构相比平面抛光结构,钝化性能略差的原因(以(100)晶向硅片 为例):
金字塔形貌结构曝露过多Si(111)晶向晶面,SiOx/Si(111)的界面态密度比SiOx/Si(100)界面高10倍以上 绒面结构表面的钝化接触膜层均匀性及掺杂均匀性相比抛光面更差,尤其是隧穿氧化层的厚度影响在塔基、塔尖、塔谷的厚度差异
减薄量
170s,-- 1.6μm,平均腐蚀速率 0.9 nm/s,反射率RL(550 nm),塔基 ~ 5um 230s,-- 3.7μm,平均腐蚀速率 16.1 nm/s,反射率RL+0.52% ,塔基 ~ 12 um 300s,-- 3.9μm,平均腐蚀速率 16.3 nm/s,反射率RL+0.6%,塔基 ~ 19 um 表明:初始阶段,腐蚀速率较低,随时间的增加,腐蚀速率增大,后期腐蚀速率饱和稳定。初始腐蚀速率较低,可能是由于富硼层BRL的影响
Fig. 2. Micro-structural characteristic comparisons of the rear surface obtained at different etching times: a, b and c showed the rear surface micro-structures after 170 s, 230 s, and 300 s etching observed by the SEM, respectively; d was the thickness and reflectivity changes of rear surfaces caused by different etching times; e and f showed the comparisons of several roughness characteristic parameters quantized by the LSCM.
背面塔基对POLO结构影响
P掺杂曲线 ,各组别基本一致 170s组别iVoc略低,原因可能是金字塔抛光程度差异 Si(111)含量稍高
背面栅线高度
栅线平均高度:170s:~5.9 μm;230s:~5.1 μm;300s:~4.7 μm 栅线平均宽度:170s:~44.5 μm;230s:~47 μm;300s:~46.4 μm 稍高的表面粗糙度,有利于提高栅线高宽比
Fig. 4. Comparison of the micro-structure and aspect ratio of metal fingers formed by a same screen-printing process on different roughness rear surfaces observed and quantized by a LSCM, the solid-colored lines perpendicular to the fingers indicated the direction of the height measurement, while the colored translucent areas were the extensions of solid lines along the fingers.
接触电阻率
170s组别接触电阻最低,与表面粗糙度略高,界面比表面积稍大相关
电性能
170s组别效率最高,表现为电流Isc、填充FF优势 填充优势来源于接触电阻率 Isc优势,1100~1200nm长波段170s组别反射率略低,但不足以产生这么多电流差异,可能为测试波动
10000片大数据对比
170s组别相比300s组别效率 + 0.05%(abs)
Fig. 8. Comparison of TOPCon solar cells electrical properties fabricated in batches (>10,000 pieces for etch batches) with 170 s (blue) and 300 s (red) rear etching time conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
文献参考:Influence of rear surface pyramid base micro-structure on industrial n-TOPCon solar cell performances, DOI:https://doi.org/10.1016/j.solener.2022.10.017
个人微信