第一作者:Shilong Jiang
通讯作者:操家顺 教授
通讯单位:河海大学环境学院
DOI:10.1016/j.cej.2023.147526
痕量尿素的去除是电子级超纯水(UPW)生产过程中的一项重大挑战。本研究提出了一种调节单原子钴催化剂(RyCo-CN0.20)低配位的简单策略,以便通过过一硫酸盐(PMS)活化高效去除痕量尿素。通过对 NaBH4 的原位还原,构建了具有低配位 Co-N3 位点的最佳 R0.50Co-CN0.20 催化剂,并显著提高了 PMS 活化能力。微量尿素的去除率在 5 分钟内达到 94%。在 R0.50Co-CN0.20/PMS 系统中,痕量尿素的降解 kobs 达到 0.4576 min-1,远高于之前报道的系统。自由基淬灭和电子顺磁共振实验表明,单线态氧是最主要的自由基。R0.50Co-CN0.20/PMS 体系中相应的单线态氧的稳定浓度提高到 16.361 × 10-6 μM,是 Co-CN0.20/PMS 的两倍。密度泛函理论计算显示,与 Co-N4 位点相比,Co-N3 位点中 Co 中心的优化电子分布处理了更高的 d 带中心(-1.08 eV)和更丰富的电子转移数(0.75 e-),从而实现了更强的 PMS 活化。连续运行证实,R0.50Co-CN0.20/PMS 在运行 150 小时后,痕量尿素的去除率仍能保持在 80% 以上。此外,R0.50Co-CN0.20/PMS 在 UPW 中试生产过程中有效降低了微量尿素造成的污染,确保了终端 UPW 的质量(总有机碳小于 1 μg/L)。该研究为通过低配位单原子催化剂活化 PMS 去除痕量尿素提供了一种新方法。
本研究在二维 g-C3N4 纳米片(R0.50Co-N0.20)上锚定了单分散 Co-N3 位点,以激活 PMS 降解痕量尿素。原子高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和 X 射线吸收精细结构光谱(XAFS)证实了 Co 位点的配位结构。在 Co-N3 配位结构的高度不饱和特性的驱动下,R0.50Co-N0.20 表现出优异的 PMS 活性能力和尿素去除效率。此外,还通过连续流柱实验和中试研究评估了在 UPW 生产系统中去除痕量尿素的实际应用潜力。这项研究提出了一种通过低配位单原子催化剂介导 PMS 活化去除痕量尿素的创新方法。
Fig. 1. (a) Schematic illustration of the preparation process of R0.50Co-CN0.20. (b) HRTEM image, (c) SAED pattern, and (d) representative aberration-corrected HAADF-STEM of Co-CN0.20. (e) HRTEM image, (f) SAED pattern and (g) representative aberration-corrected HAADF-STEM of R0.50Co-CN0.20. (h) HAADF-STEM image and (i-k) C, Co, and N elemental mapping images of R0.50Co-CN0.20.
Fig. 2. (a) and (b) XRD patterns of Co-CN0.20 and RyCo-CN0.20 (y = 0.10, 0.20, 0.50 and 1.00). (c) FTIR spectra of CN, Co-CN0.20, and R0.50Co-CN0.20. (d) C 1 s, (e) N 1 s XPS spectra of CN, Co-CN0.20, and R0.50Co-CN0.20. (f) Co 2p XPS spectra of Co-CN0.20 and R0.50Co-CN0.20.
Fig. 3. (a-b) XANES spectra of Co K-edge of Co-foil, Co3O4, CoO, CoPc, Co-CN0.20 and R0.50Co-CN0.20. (c) Fourier transforms at the Co K-edge of Co-foil, Co3O4, CoO, CoPc, Co-CN0.20, and R0.50Co-CN0.20. EXAFS fitting curves of (d) Co-Pc, (e) Co-CN0.20 and (f) R0.50Co-CN0.20 at R space. WT-EXAFS spectra of (g) Co-Pc, (h) Co-CN0.20 and (i) R0.50Co-CN0.20.
Fig. 4. (a) The degradation curves and (b) corresponding kobs of urea degradation in different catalytic systems. (c) Co leaching concentration in different catalytic systems at 30 and 60 mins. (d) PMS decomposition curves in CN/PMS, Co-CN0.20/PMS, and R0.50Co-CN0.20/PMS system. (e) S species variation before and after catalysis in R0.50Co-CN0.20/PMS system. (f) N and C species variation. (g) Degradation curves under different urea concentrations in R0.50Co-CN0.20/PMS system. (h) The cycling experiment of R0.50Co-CN0.20/PMS system. (i) XRD patterns of R0.50Co-CN0.20 before and after catalysis.
Fig. 5. (a) The degradation curves and (b) corresponding kobs of urea degradation under different quenching agents. (c) DMPOX and DMPO-·OH, (d) DMPO-·O2– and (e) TEMP-1O2 signal in CN/PMS, Co-CN0.20 and R0.50Co-CN0.20/PMS system. (f) kobs of FFA degradation and 1O2 steady concentration in Co-CN0.20/PMS and R0.50Co-CN0.20/PMS system. (g) EIS spectra of CN, Co-CN0.20 and R0.50Co-CN0.20. Real time (h) i-t and (i) v-t curve measurements upon the addition of PMS using Co-CN0.20 and R0.50Co-CN0.20 as the working electrodes.
Fig. 6. (a) Top view of the optimized Co-N4 structure. (b) Optimized configurations of PMS adsorbed on Co-N4 site. (c) Differential charge density diagram for PMS adsorbed at the Co-N4 site. Density of states (DOS) diagrams of Co 3d (d) before and (e) after PMS adsorption on Co-N4 site. (f) Top view of the optimized Co-N3 structure. (g) Optimized configurations of PMS adsorbed on Co-N3 site. (h) Differential charge density diagram for PMS adsorbed at the Co-N3 site. DOS diagrams of Co 3d (i) before and (j) after PMS adsorption on Co-N3 site.
总之,通过原位还原法制备了一种具有低配位 Co-N3 位点的高效 Co 基 SAC(R0.50Co-CN0.20)。在自然条件下,R0.50Co-CN0.20 在以 PMS 为氧化剂的尿素降解过程中表现出最佳催化活性,其性能分别是 Co-CN0.20 和 CN 的 1.8 倍和 2.1 倍。此外,在 R0.50Co-CN0.20/PMS 体系中,微量尿素(100 μg/L)在 5 分钟内的降解效率超过 90%,微量尿素降解的 kobs 达到 0.4576 min-1。淬灭实验、电化学测量和 EPR 测量证实,1O2 是主要的反应物种。DFT 计算证明,与 Co-N4 位点(分别为-1.08 eV 和 0.66 e-)相比,具有更高的 d 带中心(-1.14 eV)和更丰富的电子转移数(0.75 e-)的 Co-N3 位点具有更强的 PMS 吸附和活化能力。此外,连续流动柱实验表明,R0.50Co-CN0.20/PMS 对尿素的去除率保持在 80% 以上,并可持续 1000 BV 以上。最后,与传统系统的 TOC(3.23 μg/L)相比,改良型 UPW 生产系统中 POU 的 TOC 可有效控制在 1 μg/L 以下(0.86 μg/L)。我们的改良试点研究将激励微电子制造业进一步发展 UPW 生产。
Shilong Jiang, Song Cheng, Jiashun Cao, Cailiang Yue, Jianglei Xiong, Cong Jiang, Hongzhan Cai, Jianhua Wu, Monodispersed Co-N3 loaded carbon nitride mediated peroxymonosulfate activation for rapid degradation of trace urea via singlet oxygen, Chemical Engineering Journal, 2024, https://doi.org/10.1016/j.cej.2023.147526
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧