第一作者:Yi-Shuo Zhang, Xin-Jia Chen
通讯作者:陈飞 教授
通讯单位:重庆大学环境与生态学院
DOI:10.1016/j.watres.2024.123058
过氧酮反应是一种很有前途的水处理替代技术,但传统上受到 pH 值操作范围限制和氧化剂利用率不理想的影响。在这项研究中,我们引入了一种新型两性金属氧化物(ZnO)调控过氧化氢系统,它突破了传统过氧化氢工艺的 pH 值限制。我们的创新方法利用氧化锌的独特性质来调节传统 O3/H2O2(或过硫酸盐,PMS)过程的反应途径,从而在酸性条件下(pH=5.8)提高了 52.4 %(64.9 %)的缺电子污染物阿特拉津的去除效率。这是通过促进羟基自由基(-OH)和硫酸根自由基(SO4--)的生成实现的,同时还显著提高了 O3 的利用效率,从而减少了所需的氧化剂用量。该系统中的主要活性位点被确定为锌-氧化剂位点,氧化锌与氧化剂之间的关键界面相互作用通过综合分析技术得以阐明。这些研究表明,氧化锌充当电子受体,H2O2(或 PMS)充当电子供体,从而形成反应中间体。该中间体随后与 O3 发生反应,产生 HO2- (SO5--) 和 O3-- 等二级自由基,这些二级自由基有助于产生最终的自由基物种 -OH 和 SO4--。通过抗干扰测试、中试规模焦化废水处理(矿化率超过 70%)和广泛的生物毒性评估,验证了氧化锌调控过氧化物酮工艺的功效,所有这些都证明了该系统强大的降解能力、稳定性和显著的解毒潜力。利用单位电能(EE/O)和生命周期评估(LCA)对反应系统与传统技术进行的详细比较进一步凸显了其优势。这项研究为复杂废水的处理提供了开创性的解决方案,展示了氧化锌催化过氧酮在实际废水处理应用中的巨大前景。
Fig. 1. Degradation efficiency of ATZ by O3, O3/H2O2, and ZnO/O3/H2O2 at pH=5.0, 7.0, and 9.0 (a). Degradation rates of ATZ by O3, O3/PMS, and ZnO/O3/PMS systems at pH=5.0, 7.0, and 9.0 (b). Mineralization rates of ATZ in different systems (c). Control experiment for Zn2+ (d). Changes in pH of the ZnO/O3/H2O2 reaction under different initial pH conditions (e). Degradation efficiency in the presence of buffer salts (f). Catalytic effect of commercial MnO2 on O3/H2O2 (PMS) (g). The cycling experiment of ZnO/O3/H2O2 (h). XRD of ZnO before and after reaction (i). FTIRD of ZnO before and after reaction (j). ICP of different systems (k). Conditions: [ATZ]0 = 5 mg•L-1, [H2O2] = 0.05 mM, [PMS] = 0.05 mM, [O3] = 15.05 mg•L-1, ZnO = 20 mg, flow rate = 200 mL•min-1, T = 20 ± 2 °C. For (c), "O" represents O3, "OH" represents O3/H2O2, "ZOH" represents ZnO/O3/H2O2, "OP" represents O3/PMS, and "ZOP" represents ZnO/O3/PMS. For (d), [Zn2+]=0.75 mM. For (g), "MOH" represents MnO2/O3/H2O2, and "MOP" represents MnO2/O3/PMS. For (k), "ZOH-5, ZOH-7, ZOH-9″ respectively represent the reaction of ZnO/O3/H2O2 under pH=5.0, 7.0, and 9.0 conditions.
Fig. 2. Capture experiments of different catalytic systems (a). ESR of different systems (b). NB probe experiment (c). BA probe experiment (d). Contribution of •OH in the ZnO/O3/H2O2 system (e). Contribution of·•OH and SO4·•-in the ZnO/O3/PMS system (f). The variation of O3 concentration in different systems during the reaction process (g). Utilization rate of oxidants in different systems (h). Conditions: [ATZ]0 = 5 mg•L-1, [H2O2] = 0.05 mM, [PMS] = 0.05 mM, [O3] = 15.05 mg•L-1, ZnO = 20 mg, flow rate = 200 mL•min-1, TBA = MeOH = 40 mM, [NB]0 = [BA]0 = 5 mg•L-1, T = 20 ± 2 °C. For (b), "ZOH-1, ZOH-3, ZOP-1, ZOP-3″ represent the signals collected by the ZnO/O3/H2O2 and ZnO/O3/PMS systems at reaction times of 1 min and 3 min, respectively; ZOH-A and ZOP-A "respectively represent the signals collected after adding ATZ to two reaction systems.
Fig. 3. EDTA shielding Zn site experiment (a). XPS of Zn 2p in ZnO before and after the reaction (b). In situ Raman spectroscopy of the ZnO/O3/H2O2 system (c). In situ Raman spectroscopy of the ZnO/O3/PMS system (d). The adsorption effect of ZnO on oxidants (e). Open circuit potential of ZnO/O3/H2O2 system (f). I-t curve of ZnO/O3/H2O2 system (g) LSV curve of ZnO/O3/H2O2 system (h). Binding energy calculation for reaction steps (i). Mechanistic diagram of ZnO catalyzed O3/H2O2 (PMS) (j). Conditions: [ATZ]0 = 5 mg•L-1, [H2O2] = 0.05 mM, [PMS] = 0.05 mM, [O3] = 15.05 mg•L-1, ZnO = 20 mg, flow rate = 200 mL•min-1, T = 20 ± 2 °C.
Fig. 4. Effect of different ions (a) and water quality (b) on ZnO/O3/H2O2. Effect of different Cl- and SO42- concentrations on ZnO/O3/H2O2 (c). Effect of different pairs of pH on ATZ removal using ZnO/O3/H2O2 (d). Degradation rates under different water quality conditions (e). Effect of HA concentration on ZnO/O3/H2O2 (f). Comparison of kinetic constants for different pollutants in different systems (g). TOC degradation experiment of 50 L actual coking wastewater (h). Conditions: [H2O2] = 0.05 mM, [PMS] = 0.05 mM, [O3] = 15.05 mg•L-1, ZnO = 20 mg, flow rate = 200 mL•min-1, [Ions]=5 mM (for a), [pollutants]= 5 mg•L-1 (except h), reaction time = 18 min (except h).
Fig. 5. HOMO and LUMO distributions (a), Chemical structure, molecular electrostatic potential (ESP) (b) of ATZ. The common degradation pathway of ATZ by ZnO/O3/H2O2 and ZnO/O3/PMS systems (c). The additional unique degradation pathway of ZnO/O3/PMS system (d). The f-, f+, f0 of each atom in ATZ (e). Zebrafish toxicity experiment (f). E. coli. culture experiment (g). Wheat seed germination experiment (h).
Fig. 6. ZnO catalyzed degradation of ATZ by O3/PAA and O3/PI (a), different commercial metal oxides catalyze O3/H2O2 and O3/PMS (b), comparison of degradation effects with traditional Fenton and Fenton-like systems (c), comparison of EE/O among different systems (d), relative environmental impacts of O3/H2O2, O3/PMS, Fenton, ZnO/O3/H2O2, and ZnO/O3/PMS processes on the degradation of 5 mg•L-1 ATZ using environmental descriptors (e), technical prospects of ZnO/O3/H2O2 (PMS) process (f). Conditions: For (e), "0.33 L" and "50 L" represent processing volumes of 0.33 L and 50 L, respectively.
在这项工作中,我们以传统 O3 无法有效去除的缺电子污染物 ATZ 为模型污染物,深入研究了商用氧化锌对传统过酮工艺的催化机理。战略性地使用乙二胺四乙酸来屏蔽锌位点并产生氧空位,对于确定锌位点是催化反应的主要活性位点至关重要。在反应前后通过 XPS 对 Zn 2p 峰进行的比较分析表明,H2O2(PMS)是电子供体,而 Zn 位点是电子受体。这种相互作用促进了强烈的界面相互作用,并形成了反应性中间产物。ZnO/peroxone 系统原位拉曼光谱中新发现的特征峰证实了这些中间产物。一系列详细的电化学实验进一步证实了这些中间产物的存在和作用。臭氧的强亲电性发挥了关键作用,它与中间产物发生反应,打破化学键,从而产生 HO2- (HSO5--) 等活性物种,并将储存在 Zn 位点的电子转移到 O3 上,最终形成 O3--。这些自由基被转化为高活性的 -OH (SO4--)。此外,这项研究还强调了氧化锌/过氧酮技术在实际废水处理中的实际应用。一种创新的方法是在泡沫上添加氧化锌,并使用该系统处理 50 升实际焦化废水。该系统还通过一系列生物实验进行了测试,以确认其有效性和安全性。
展望未来,氧化锌/过氧酮系统是一种稳健、环保的水处理方法,有望克服传统上阻碍过氧酮工艺更广泛应用的 pH 值敏感性和氧化剂利用率低等难题。未来的研究重点应放在扩大该技术的规模、优化催化剂性能和进一步降低运营成本上,以提高其在实际废水处理方案中的实用性。此外,将氧化锌与其他高级氧化工艺相结合,并探索其与其他催化剂和氧化剂的协同效应,为提高废水处理技术的效率和范围开辟了令人兴奋的途径。这种综合方法解决了当前的环境问题,并为未来水处理方法的创新奠定了基础。
Yi-Shuo Zhang, Xin-Jia Chen, Xin-Tong Huang, Chang-Wei Bai, Pi-Jun Duan, Zhi-Quan Zhang, Fei Chen, Enhanced peroxone reaction with amphoteric oxide modulation for efficient decontamination of challenging wastewaters: Comparative performance, economic evaluation, and pilot-scale implementation, Water Research, 2025, https://doi.org/10.1016/j.watres.2024.123058
声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!
邮箱:Environ2022@163.com
欢迎大家将《水处理文献速递》加为星标
即时获取前沿学术成果
若有帮助,请点击“在看”分享!
投稿、转载请扫描下方二维码联系小编吧