文献速递|合肥工业大学JHM:锚定单原子Fe-N4位点的尺寸匹配分层多孔碳材料用于PMS活化:关键活性物种和催化机理

文摘   科学   2025-01-24 08:09   天津  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Haoran Tian

通讯作者:崔康平 教授

通讯单位:合肥工业大学资源与环境工程学院

DOI:10.1016/j.jhazmat.2023.132647









全文速览

单原子催化剂被认为是最有前途的 AOP 催化剂之一。然而,如何设计和合成具有成本效益的高负载单原子催化剂是限制其发展和应用的瓶颈。在本研究中,我们报告了一种高负载单原子铁催化剂(Fe-SAC-BC),它以废弃生物质为碳载体,锚定 Fe-N4 位点。该催化剂在废水处理中表现出优异的催化性能和稳定性。与传统的自由基氧化不同,该催化剂的非自由基降解过程以 Fe-N4 为活性位点,以高价铁氧中间体为关键活性物种,并通过猝灭和探针实验进行了鉴定。对 Fe-SAC-BC 的催化机理进行了 DFT 计算和分子动力学模拟,其中 Fe (III)-N4 是最可能的活性位点,Fe (IV)-OH 是最主要的活性物种。这项研究为新型单原子催化剂的设计和 AOP 非辐射途径的机理探索提供了新的策略和认识。








图文摘要







引言

本研究以废弃生物质为碳前驱体,实现了具有明确 Fe-N4 配位结构的铁酞菁(FePc)分子的稳定分散和锚定。在热解过程中,利用 KOH 的蚀刻效应和温度控制,实现了碳基质孔径分布的调控,成功制备了高金属原子负载的铁单原子催化剂。在不同的操作条件下,对活化 PMS 去除土霉素(OTC,一种典型的抗生素)的催化性能进行了评估。随后,进行了淬灭实验以评估活性物种在反应体系中的贡献,并通过探针分析和电子自旋共振实验进一步确定了活性物种的种类。此外,通过理论计算结合实验结果,提出了其活化 PMS 的可能催化机理。该研究为单原子催化剂的制备提供了一种通用策略,并为基于 PMS 的活化催化氧化机理开辟了思路,从而实现 AOPs 对污染物的降解。






同位素标记技术

图文导读

Fig. 1. Schematic diagram of catalyst preparation.

Fig. 2. XRD patterns (a) and Raman patterns (b) of different catalysts and FePc; N contents and types of different catalysts (c); high-resolution N 1 s (d) and Fe 2p spectra (e) of catalysts; HADDF-STEM images of Fe-SAC-BC700 (f), Fe-SAC-BC (g) and Fe-NAP-BC (h).

Fig. 3. SEM (a), TEM(b) and HAADF-STEM (c) images of Fe-SAC-BC; EDX mapping images of Fe-SAC-BC (d-g); XANES at the Fe K-edge and (h) FT-EXAFS of Fe foil, FeO, Fe2O3, FePc, and Fe-SAC in R space; Comparison between the experimental and fitting results of the FT-EXAFS of Fe-SAC-BC in (k) R space and (j) k space.

Fig. 4. (a) Degradation of OTC in various systems (Catalysts: 0.1 g/L, OTC: 10 mg/L, PMS: 1 mM/L pH=7, T = 25 ℃; (b) Zeta potential of Fe-SAC-BC; (c) Effect of pH on the degradation of OTC by Fe-SAC-BC/PMS system (Fe-SAC-BC: 0.1 g/L, OTC: 10 mg/L, PMS: 1 mM/L pH=3–11, T = 25 ℃); (e) Effect of PMS addition concentration on the degradation of OTC by Fe-SAC-BC/PMS system (Fe-SAC-BC: 0.1 g/L, OTC: 10 mg/L, PMS: 0.2–1 mM/L pH=7, T = 25 ℃); (f) Linear relationship between PMS concentration and apparent rate constants; (g) Effect of catalyst dosing on the degradation of OTC by Fe-SAC-BC/PMS system (Fe-SAC-BC: 0.05–0.4 g/L, OTC: 10 mg/L, PMS: 1 mM/L pH=7, T = 25 ℃; (i) Effect of free radical scavengers on OTC degradation in FeC-SAC-BC/PAM system;(j) Transformation of DMSO2 at different reaction times;(k) Effect of SCN-, 1, 10-phenanthroline and K2Cr2O7 on the degradation of OTC by Fe-SAC-BC/PMS system; (d), (h) EPR mapping in different catalytic systems; (i) In situ ATR-FTIR mapping of Fe-SAC-BC/PMS system.

Fig. 5. (a), (b) High-performance liquid chromatography/electrospray ionization tandem mass spectrometry full-scan chromatogram and the molecular ion mass spectra of PMSO and PMSO2 before and after the catalytic reaction (c); (d) Mass spectral analyses of the 18O-labeled or unlabeled PMSO2 generated in the Fe-SAC-BC/PMS system; (e), (f) Continuous injection of OTC and PMS current reactions on BC, Fe-NAP-BC and Fe-SAC-BC working electrodes;.

Fig. 6. PDOS analysis of Fe (II)-N4, Fe (III)-N4 and PMS adsorbed at the central site of iron atoms; (b) Charge difference density diagram of PMS adsorbed on Fe (II)-N4 and Fe (III)-N4; (c), (d) Schematic diagram of a two-dimensional slice of the differential charge density; (e) Different reaction pathways and transition states of PMS molecules in different configurations of Fe-N4 sites; (f) Possible electron transfer mechanism between OTC, Fe-SAC-BC and PMS.

Fig.7. 3D-EEM fluorescence spectra of actual wastewater treated by Fe-SAC-BC/PMS system (a), (b) and (c); Recycling performance of Fe-SAC-BC (d); leaching concentration of Fe ions in ten cycles of Fe-SAC-BC/PMS system (e); catalytic degradation of OTC by Fe-SAC-BC/PMS system in real water samples (f); catalytic degradation performance of Fe-SAC-BC/PMS system for different pollutants (g); molecular structure of OTC, BPA, NFX and CAM (h).








研究意义

总之,本研究利用废弃生物质的碳化、KOH 的蚀刻效应和惰性气氛中的温度控制,实现了三维多孔材料的可调孔径分布。同时,还将其作为分散和锚定 Fe-N4 位点的基底,成功制备了高暴露、高负载的铁单原子催化剂。该催化剂在去除有机污染物的 AOPs 过程中具有高效的催化性能,并在较宽的 pH 值范围内具有良好的重复使用性。研究表明,高价铁氧中间体在提高 Fe-SAC-BC/PMS 系统的催化性能方面发挥了关键作用。值得注意的是,理论计算和实验表明,Fe (III)-N4 是主要的反应位点,而 Fe (IV)-OH 则是降解污染物的主要活性物种。这项研究为废弃生物质的回收利用和单原子催化剂的设计方案提供了新思路,也为 AOPs 过程中非自由基途径的关键活性中间体的识别和溯源提供了新见解。

文献信息

Haoran Tian, Kangping Cui, Xing Chen, Jun Liu, Qiang Zhang, Size-matched hierarchical porous carbon materials anchoring single-atom Fe-N4 sites for PMS activation: An in-depth study of key active species and catalytic mechanisms, Journal of Hazardous Materials, 2024, https://doi.org/10.1016/j.jhazmat.2023.132647



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧


水处理文献速递
分享水处理相关的前沿科学成果
 最新文章