文献速递|南昌航空大学CEJ:通过尖晶石-碳内置电场增强和协同催化活化: 生成 1O2 的新途径

文摘   2025-01-26 08:32   天津  
点击订阅公众号 | 前沿学术成果每日更新

第一作者:Xinchun Ye

通讯作者:陈德志 教授

通讯单位:南昌航空大学环境与化学工程学院

DOI:10.1016/j.cej.2024.158906









全文速览

去除复杂水基质中新出现的微污染物通常需要过量的氧化剂和/或能量输入,导致成本效益低,并可能造成二次污染。因此,实现目标微污染物的选择性氧化以达到水净化的目的是有意义的,但也是具有挑战性的。本文构建了一个从 MnFe2O4 纳米片阵列到碳布(CC)物质的内置电场(BIEF),在该电场中,电子从 Mn 和 Fe 原子转移到邻近的 C 原子,从而导致 Mn 和 Fe 位点的 d 带正向移动,费米级电子密度增加。在 BIEF 的影响下,MnFe2O4 对过氧化单硫酸盐(PMS)的活化几乎百分之百地转向了非自由基途径。此外,DFT 计算显示,PMS 的吸附能力显著增强,这导致从 PMS*直接生成 1O2 所需的能垒降低,从而开辟了一种新的途径。所需的能障降低,从而开辟了一条从 PMS* 到 1O2 的新途径。所制造的 Fenton-like 氧化系统对富电子有机微污染物具有选择性氧化作用。这项研究加深了人们对 BIEF 激活 PMS 背后驱动力的理解,并为创新尖晶石-碳催化剂的设计提供了新的见解。








图文摘要







引言

在这项研究中,我们通过一步水热法合成了一种自支撑 MnFe2O4/ 碳布 (CC) 催化剂,用于活化过一硫酸盐 (PMS)。CC 中的碳纤维完全被 MnFe2O4 纳米片阵列包裹,形成了一种准核壳结构。与粉末状 MnFe2O4 催化剂相比,制备的自支撑 MnFe2O4/CC 催化剂具有更高的催化活性、更方便的回收和更低的浸出率。表征和理论计算证实,电子从功函数(Φ)较低的 MnFe2O4 纳米片转移到Φ较高的 CC 基底上,从而在 MnFe2O4 和 CC 的界面上建立了稳健的 BIEF。引人注目的是,MnFe2O4/CC 的独特结构确保了暴露在外的锰和铁金属成为催化剂表面的主要活性位点。BIEF 的存在加快了铁、锰金属的价态循环,并为表面与 PMS 的结合提供了条件,这些协同因素促使 PMS 几乎 100% 非辐射活化。实验证据和密度泛函理论(DFT)计算表明,非辐射途径(包括单线态氧和直接电子转移)是由 PMS* 在类似芬顿的氧化体系中启动的,其中 1O2 由 PMS* 直接生成。MnFe2O4/CC/PMS Fenton 类氧化系统对富含电子的有机微污染物具有选择性氧化作用。此外,还探讨了目标污染物的降解中间产物以及连续氧化系统的降解性能。这项研究深入探讨了如何通过调节电子结构和控制 BIEF 的方向来精确调节非自由基途径的生成。





同位素标记技术

图文导读

Fig. 1a) Synthesis scheme, b) XRD pattern, c) SEM and d, e) HRTEM images, and f) element mapping of MnFe2O4/CC.

Fig. 2a) ACT degradation curves in different systems (Conditions: [ACT] = 0.01 g/L, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, T = 30 °C); b) PDOS of CC, MnFe2O4 and MnFe2O4/CC; c) charge difference distribution at the interface of MnFe2O4/CC, red and yellow indicate charge accumulation and depletion; d) work function of CC, MnFe2O4 and MnFe2O4/CC; e) schematic of electron transfer driven by energy band differences; f) schematic of electron transfer in BIEF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3a) Effects of quenchers on kobs of ACT degradation; b-d) EPR spectra for DMPO−SO4-/OH, DMPO − O2-and TEMP−1O2; e) UV–Vis absorption spectra of DPBF in the MnFe2O4/CC/PMS system (Conditions: [DPBF] = 30 µM, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, T = 30 °C); f) ACT degradation in D2O and H2O solution by MnFe2O4/CC/PMS system (Conditions: [ACT] = 0.01 g/L, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, T = 30 °C); g) HPLC curves of typical products generated by the oxidation of FFA in MnFe2O4/CC/PMS system (Conditions: [FFA] = 5 mM, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, T = 30 °C); h) contribution for ACT degradation by different pathways.

Fig. 4a, b) In situ Raman spectra; c) DFT calculation of adsorption energies of ACT and PMS on MnFe2 O4/CC; d) i-t curves, and e) OCP curves of CC, MnFe2O4 and MnFe2O4/CC; f) currents of the MnFe2O4/CC, MnFe2 O4, and CC-based GOS systems after adding ACT; g) ACT degradation curves by pre-oxidized catalysts in the presence of quenchers (Conditions: [ACT] = 0.01 g/L, [catalyst] = 0.1 g/L, [quencher] = 5 mM, T = 30 °C); h) in situ Raman spectra after FFA injection; i) Gibbs free energies of PMS* decomposition on the surface of MnFe2O4/CC.

Fig. 5a) kobs values of different pollutants degradation in the MnFe2O4/CC/PMS system; b) currents after adding different pollutants in the MnFe2O4/CC-based GOS system; c) OCP curves and d) falling potentials of the MnFe2O4/CC electrode; e) correlation between the ln(kobs) and the falling potentials; f) kobs in the coexistence of multi-pollutants; g) energy gaps between LUMO of PMS* and HOMO of pollutants; h) correction between the calculated gaps and ln(kobs) of pollutants. Conditions: [pollutant] = 0.01 g/L, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, T = 30 °C.

Fig. 6a) Possible degradation pathways of ACT in the MnFe2O4/CC/PMS system; b) schematic diagram of continuous oxidation system; c) metal ion leaching and degradation efficiency of ACT by the MnFe2O4/CC/PMS continuous oxidation system. Conditions: [ACT] = 0.01 g/L, [catalyst] = 0.1 g/L, [PMS] = 0.3 mM, flow rate = 1 mL min−1 ; temperature = 30 °C.








研究意义

通过在 CC 中的碳纤维表面原位生长 MnFe2O4 纳米片阵列,成功设计了一种自支撑 MnFe2O4/CC 催化剂。在 MnFe2O4 和碳基底的界面上存在 BIEF 可以改善 PMS 的非辐射活化(1O2 和直接电子转移)。实验和 DFT 计算证实,1O2 和电子转移均来自表面络合的 PMS*。此外,BIEF 的存在有效地减少了 PMS 的消耗和金属离子的沥滤。此外,1O2 和 ETP 主导的非降解途径对富含电子的有机污染物的去除具有高度选择性。最后,提出了 ACT 的三种可能降解途径,序氧化结果表明,制备的 MnFe2O4/CC 自支撑催化剂在 PMS-AOPs 水处理方面表现出卓越的潜力。这项研究为设计用于活化 PMS 的尖晶石氧化物-碳催化剂提供了一种新方法,并加深了对 BIEF 活化 PMS 背后驱动力的理解。

文献信息

Xinchun Ye, Dezhi Chen, Quanzhi Zhang, Tianlin Zhou, Jian-Ping Zou, Shenglian Luo, Enhanced and synergistic catalytic activation through spinel-carbon built-in electric field: A novel pathway for generating 1O2, Chemical Engineering Journal, 2025, https://doi.org/10.1016/j.cej.2024.158906



声明:本公众号仅分享前沿学术成果,无商业用途。如涉及侵权,请立刻联系公众号后台或发送邮件,我们将及时修改或删除!

邮箱:Environ2022@163.com

欢迎大家将《水处理文献速递》加为星标

即时获取前沿学术成果

若有帮助,请点击“在看”分享!


投稿、转载请扫描下方二维码联系小编吧




水处理文献速递
分享水处理相关的前沿科学成果
 最新文章