填补空白,时光派推出首个华人甲基化生理年龄时钟“甲龄”

健康   2024-10-30 20:02   上海  


抗衰新闻中,我们总能看到这样的报道:

“抗衰教父”大学大卫·辛克莱宣称自己生理年龄比实际年龄年轻17.6岁;

硅谷富豪极客Bryan Johnson靠着“抗衰蓝图”7个月年轻5.1岁;

贝佐斯投资30亿美金的Altos实验室13天让细胞年轻了30岁[1];

在惊叹于这些抗衰实战数字之余,很多人好奇:他们是如何测量年龄的。事实上,他们采用年龄测量方式都是甲基化时钟,而这也是目前科学界一个普遍使用的年龄检测工具,不完全统计,已经推出的甲基化时钟已达数十种。

但遗憾的是,这种在国外遍地开花的衰老检测方法至今仍未出现在国人的视野中。

图注:甲基化时钟概览


作为国内率先对衰老进行商业化测量的机构,时光派在衰老检测上已经取得了如时光尺3.0这样的傲人成绩,但国内一直缺席的商业化甲基化时钟产品始终是派派的遗憾。


6月4日,时光派终于可以将适合亚洲人的首个甲基化衰老检测产品呈现给大家:国内首个华人甲基化生理时钟“甲龄”发布仪式在时光派上海线下店成功举行,相信这款产品的发布也将为中国式精准抗衰提供一份助力。


点击下方卡片,关注时光派公众号,后台回复“甲龄”,查看产品详情。





在介绍甲龄之前,首先需要了解的是衰老时钟及甲基化的概念。

对衰老生物学的探索有一百多年,但人们一直在摸着石头过河,为什么每个人都按照时间有序前进,衰老速度却大相径庭?十多年前第一款衰老时钟——由全身51个组织/细胞的基因及其表观遗传修饰情况整合而成的Horvath时钟的诞生成功破题,也正式将“精确定量衰老监测”的概念搬上抗衰历史舞台[2]。

随后,衰老时钟的研发长盛不衰,据不完全统计,截至2024年初,数十款时钟被发表在各篇研究论文中,参考指标包括DNA甲基化、转录组、蛋白组、代谢组、宏基因组、影像学成像、临床血液检测、心理学等,其中DNA甲基化似乎备受喜爱。

图注:各种不同参考指标的衰老时钟,DNA甲基化占据了半壁江山[36]


从创始者Horvath时钟到后续发展创新中的参考指标偏好,一代代甲基化时钟努力输出老年人群的真实年龄和衰老速度,甲基化与生理年龄及衰老速度的联系也呼之欲出,那“甲基化”到底是什么?

人类拥有一套庞大、复杂的遗传物质,每个基因的表达都并非一成不变,决定一个基因能否表达的是表观遗传,DNA甲基化作为“基因开关”,是表观遗传里最简单,也最具代表性的一种。

图注:一张图简述DNA甲基化形式及作用[37]


上世纪60年代,科学家们就发掘了甲基化修饰和衰老之间的关联[38],在衰老过程中,甲基化对基因表达的操控会发生变化,甲基化情况也就与衰老程度直接相关,主要表现为:


  • 衰老过程中全基因组水平的DNA甲基化水平逐渐下降,尤其是DNA上重复序列和转座子区域的去甲基化更为明显;

  • 一些特定基因位点的DNA甲基化水平则呈现出与年龄相关的变化模式,有增有减。

所以,深谙人类底层“运行”逻辑、并实时变化的甲基化是衰老和寿命的重要标志物,以甲基化为基础的甲基化时钟也是能更真实反映衰老情况、预测衰老相关疾病、在抗衰行业中更具代表性的检测工具。

在基础研究不断完善的同时,甲基化时钟作为特立独行、能定量的“测衰新先锋”,也通过十数年的努力在各种领域应用中证明了自己的价值:


  • 衰老机制研究

  • 衰老风险评估

  • 疾病诊断和预后

  • 干预措施评价

图注:不同干预措施作用下,受试者甲基化时钟年龄的逆转[39]


从研究到应用,从被动接受到主动干预,这些前人对甲基化时钟的“物尽其用”,当然也是甲龄的未来应用方向,但是作为一款商业化新甲基化时钟,甲龄不仅是站在了无数巨人肩膀上眺望衰老,将更远方、更靓丽的景色传递给地面上的普罗大众,还能“青出于蓝而胜于蓝”,博采众时钟之长,自然优势长长。





甲基化生理时钟的研究和应用历程反映的是表观遗传学与衰老生物学交叉融合的过程,也反映了对更精确衰老检测需求的进化,渴望通过各种手段获得更长的寿命,怎么能对自己最基本的衰老情况知之甚少?

目前在一些国家的健康管理服务中,甲基化时钟已被用作阶段管理成效的评估工具,广受抗衰爱好者欢迎。这场“环大陆狂欢”与华人抗衰极客需求碰撞,产生的火花就是这款万众期待的,基于优质国人数据库的甲基化生理年龄时钟——甲龄(MetAge)。

和历史研究成果相比,甲龄毫不逊色,而相对其他的商业化甲基时钟产品(如大卫·辛克莱教授推出的tally health口腔内皮商业时钟),甲龄更显优秀:

图注:甲龄优势一览


No.1

更权威


甲龄的数据库来自上海长征医院和中国科学院,由多个国家级权威科研机构和临床医学中心联合优化和验证,包括国家级衰老研究中心、国家老年临床疾病医学研究中心(复旦华山)、上海市科委衰老机制交叉研究项目和国家立项重点研发计划“主动健康与人口老龄化科技应对”、中国科学院生物与化学交叉研究中心。

图注:盲测检测样本甲基化年龄在数据库中的具体位置


No.2

更便捷


不同衰老时钟的检测组织不尽相同,大部分是血液,但也有口腔上皮细胞、面部信息、尿液、视网膜等。虽然目前来说无法用一个最具代表性的时钟概括全身水平,但综合所有组织间的串扰,研究证明了免疫系统、血液或下丘脑-垂体-肾上腺(HPA)轴等神经内分泌通路时钟的优势[36]。

为了更高的检测精度,甲龄选择血液作为检测样本,同时为了简化检测步骤和更便捷的检测体验,甲龄选择了采血量更少、方法更简便、但效果不受影响的干血斑技术。


No.3

更客观


甲龄检测则采用了盲检模式,使用随机编码,仅需要提供外周血样本,不需要提交任何个人身份信息,更无需透露实际年龄,可以有效保证结果的真实性、客观性和私密性。


No.4

更详细


采样端简便、精准和安全,报告端也拥有独到优势。甲龄还能为检测者输出1-3个重点基因表观遗传变化,并提供相应的衰老或相关疾病风险解读。


图注:甲龄输出报告实例:特定基因(图中基因分别与心血管及脂质代谢、免疫系统相关)甲基化水平在相较于数据库人群平均水平


各方优势下,甲龄将甲基化衰老检测技术从高阁推及大众意义非凡,国内抗衰爱好者终于可以用上最热的衰老时钟,往后在参考论文进行抗衰实践、自测评估、方案调整时可能出现的偏差更少,试错成本更低。





在探究人类寿命更远段的道路上,人人都是尝试者,派派自然也不例外。甲龄时钟的开发是在衰老检测方向的探索和创新,也是对国内健康长寿的试验。

一方面,甲龄作为国内首创,自然还有不可估量的进步空间,更多的指标、更全面的数据输出、更精确、更简便……只要人类衰老尚未解决,甲龄自然就不可能是“完美的”。

短时间内,甲龄是国内衰老检测类似产品中的“唯一”,能提供的远比大家想象的多;长期角度来看,甲龄也会随着衰老时钟的发展同步进步,不断优化,不断创造新的价值。

图注:衰老生物学发展:未完待续[37]……


另一方面,甲龄或任何一款时钟、生理年龄检测的产品,都不是衰老检测的全部,它们所反映的表观遗传改变虽然能在不同程度上与其他衰老标识相互影响[41],但无法取代,如果用海上冰山来形容衰老的话,那甲基化时钟只能算是最显眼的一角。

幸运的是,除甲龄外,时光派早已为抗衰爱好者准备了多角度、更全面、包含200余衰老检测指标的检测方案——时光尺3.0

图注:常见衰老检测手段、不完全指标例举以及局限性讨论,时光尺3.0包含其中大部分指标类别


已经购买过其他时光尺衰老评估服务的读者,亦不用懊悔“下场早了”,将甲基化生理时钟与其他衰老检测手段相结合,形成多维度、动态化的衰老评估体系,才能更全面、准确地刻画个体的衰老状态,为健康衰老提供指导。


同时光尺3.0相似的是,即使没有体验过派派的时光尺衰老检测相关产品,甲龄的检测流程也足够简便快捷:


提供地址信息→时光派邮寄采样盒(如下图左)→居家自行采样(采样方法参照采用盒中使用说明和采样视频)→自行邮寄回时光派(如下图右)→时光派相关实验室检测及数据报告出具。



‍‍‍


作为全国首个商业化甲基化衰老时钟产品,国际大牌甲基化时钟相比,“甲龄”目前处于国人可以运用,但产品技术本身仍需要真诚、谨慎、科学浇灌成长的水平。

在国内首个华人甲基化生理时钟“甲龄”发布仪式上,时光派该项目负责人鲁博士表示:“甲基化时钟的发布,不仅会让‘时光尺’的检测更精准和灵敏,也会推动国内衰老检测的进展”



任何“首个”都需要见证,时光派诚邀热爱抗衰的你一起来参与这场测衰盛宴,率先体验这款新鲜出炉的“全国首创”!在长生之路上,总有为人类健康衰老勇于尝试的人,更不要说,他们在为抗衰老行业发展贡献一份自己力量的同时,还能最先尝到最新鲜、甜美的果实呢?

点击下方卡片,关注时光派公众号,后台回复“甲龄”,查看产品详情。


如有疑问,可加健康顾问微信:timepie06进行联系。



*以上内容包含广告


—— TimeCure ——

参考文献

[1]Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2022, April 8). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife Sciences Publications, Ltd. https://elifesciences.org/articles/71624

[2]Horvath S. (2013). DNA methylation age of human tissues and cell types. Genome biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115

[3]Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PloS one, 6(6), e14821. https://doi.org/10.1371/journal.pone.0014821

[4]Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

[5]Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D. O., Jöckel, K. H., Erbel, R., Mühleisen, T. W., Zenke, M., Brümmendorf, T. H., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24

[6]Lin, Q., Weidner, C. I., Costa, I. G., Marioni, R. E., Ferreira, M. R., Deary, I. J., & Wagner, W. (2016). DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging, 8(2), 394–401. https://doi.org/10.18632/aging.100908

[7]Galkin, F., Mamoshina, P., Kochetov, K., Sidorenko, D., & Zhavoronkov, A. (2021). DeepMAge: A Methylation Aging Clock Developed with Deep Learning. Aging and disease, 12(5), 1252–1262. https://doi.org/10.14336/AD.2020.1202

[8]Zhang, Y., Wilson, R., Heiss, J., Breitling, L. P., Saum, K. U., Schöttker, B., Holleczek, B., Waldenberger, M., Peters, A., & Brenner, H. (2017). DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nature communications, 8, 14617. https://doi.org/10.1038/ncomms14617

[9]Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. https://doi.org/10.18632/aging.101414

[10]Liu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging cell, 19(10), e13229. https://doi.org/10.1111/acel.13229

[11]Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303–327. https://doi.org/10.18632/aging.101684

[12]Horvath, S., Oshima, J., Martin, G. M., Lu, A. T., Quach, A., Cohen, H., Felton, S., Matsuyama, M., Lowe, D., Kabacik, S., Wilson, J. G., Reiner, A. P., Maierhofer, A., Flunkert, J., Aviv, A., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., … Raj, K. (2018). Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging, 10(7), 1758–1775. https://doi.org/10.18632/aging.101508

[13]Voisin, S., Harvey, N. R., Haupt, L. M., Griffiths, L. R., Ashton, K. J., Coffey, V. G., Doering, T. M., Thompson, J. M., Benedict, C., Cedernaes, J., Lindholm, M. E., Craig, J. M., Rowlands, D. S., Sharples, A. P., Horvath, S., & Eynon, N. (2020). An epigenetic clock for human skeletal muscle. Journal of cachexia, sarcopenia and muscle, 11(4), 887–898. https://doi.org/10.1002/jcsm.12556

[14]Zhang, Q., Vallerga, C. L., Walker, R. M., Lin, T., Henders, A. K., Montgomery, G. W., He, J., Fan, D., Fowdar, J., Kennedy, M., Pitcher, T., Pearson, J., Halliday, G., Kwok, J. B., Hickie, I., Lewis, S., Anderson, T., Silburn, P. A., Mellick, G. D., Harris, S. E., … Visscher, P. M. (2019). Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome medicine, 11(1), 54. https://doi.org/10.1186/s13073-019-0667-1

[15]Peters, M. J., Joehanes, R., Pilling, L. C., Schurmann, C., Conneely, K. N., Powell, J., Reinmaa, E., Sutphin, G. L., Zhernakova, A., Schramm, K., Wilson, Y. A., Kobes, S., Tukiainen, T., NABEC/UKBEC Consortium, Ramos, Y. F., Göring, H. H., Fornage, M., Liu, Y., Gharib, S. A., Stranger, B. E., … Johnson, A. D. (2015). The transcriptional landscape of age in human peripheral blood. Nature communications, 6, 8570. https://doi.org/10.1038/ncomms9570

[16]Fleischer, J. G., Schulte, R., Tsai, H. H., Tyagi, S., Ibarra, A., Shokhirev, M. N., Huang, L., Hetzer, M. W., & Navlakha, S. (2018). Predicting age from the transcriptome of human dermal fibroblasts. Genome biology, 19(1), 221. https://doi.org/10.1186/s13059-018-1599-6

[17]Mamoshina, P., Volosnikova, M., Ozerov, I. V., Putin, E., Skibina, E., Cortese, F., & Zhavoronkov, A. (2018). Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Frontiers in genetics, 9, 242. https://doi.org/10.3389/fgene.2018.00242

[18]Huan, T., Chen, G., Liu, C., Bhattacharya, A., Rong, J., Chen, B. H., Seshadri, S., Tanriverdi, K., Freedman, J. E., Larson, M. G., Murabito, J. M., & Levy, D. (2018). Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging cell, 17(1), e12687. https://doi.org/10.1111/acel.12687

[19]Xia, X., Chen, X., Wu, G., Li, F., Wang, Y., Chen, Y., Chen, M., Wang, X., Chen, W., Xian, B., Chen, W., Cao, Y., Xu, C., Gong, W., Chen, G., Cai, D., Wei, W., Yan, Y., Liu, K., Qiao, N., … Han, J. J. (2020). Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nature metabolism, 2(9), 946–957. https://doi.org/10.1038/s42255-020-00270-x

[20]Krištić, J., Vučković, F., Menni, C., Klarić, L., Keser, T., Beceheli, I., Pučić-Baković, M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni, S., Kolčić, I., Polašek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y., … Lauc, G. (2014). Glycans are a novel biomarker of chronological and biological ages. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(7), 779–789. https://doi.org/10.1093/gerona/glt190

[21]Lehallier, B., Shokhirev, M. N., Wyss-Coray, T., & Johnson, A. A. (2020). Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Aging cell, 19(11), e13256. https://doi.org/10.1111/acel.13256

[22]Sathyan, S., Ayers, E., Gao, T., Weiss, E. F., Milman, S., Verghese, J., & Barzilai, N. (2020). Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging cell, 19(11), e13250. https://doi.org/10.1111/acel.13250

[23]Hertel, J., Friedrich, N., Wittfeld, K., Pietzner, M., Budde, K., Van der Auwera, S., Lohmann, T., Teumer, A., Völzke, H., Nauck, M., & Grabe, H. J. (2016). Measuring Biological Age via Metabonomics: The Metabolic Age Score. Journal of proteome research, 15(2), 400–410. https://doi.org/10.1021/acs.jproteome.5b00561

[24]van den Akker, E. B., Trompet, S., Barkey Wolf, J. J. H., Beekman, M., Suchiman, H. E. D., Deelen, J., Asselbergs, F. W., Boersma, E., Cats, D., Elders, P. M., Geleijnse, J. M., Ikram, M. A., Kloppenburg, M., Mei, H., Meulenbelt, I., Mooijaart, S. P., Nelissen, R. G. H. H., Netea, M. G., Penninx, B. W. J. H., Slofstra, M., … Slagboom, P. E. (2020). Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation. Genomic and precision medicine, 13(5), 541–547. https://doi.org/10.1161/CIRCGEN.119.002610

[25]Hwangbo, N., Zhang, X., Raftery, D., Gu, H., Hu, S. C., Montine, T. J., Quinn, J. F., Chung, K. A., Hiller, A. L., Wang, D., Fei, Q., Bettcher, L., Zabetian, C. P., Peskind, E., Li, G., Promislow, D. E. L., & Franks, A. (2022). A Metabolomic Aging Clock Using Human Cerebrospinal Fluid. The journals of gerontology. Series A, Biological sciences and medical sciences, 77(4), 744–754. https://doi.org/10.1093/gerona/glab212

[26]Robinson, O., Chadeau Hyam, M., Karaman, I., Climaco Pinto, R., Ala-Korpela, M., Handakas, E., Fiorito, G., Gao, H., Heard, A., Jarvelin, M. R., Lewis, M., Pazoki, R., Polidoro, S., Tzoulaki, I., Wielscher, M., Elliott, P., & Vineis, P. (2020). Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging cell, 19(6), e13149. https://doi.org/10.1111/acel.13149

[27]Galkin, F., Mamoshina, P., Aliper, A., Putin, E., Moskalev, V., Gladyshev, V. N., & Zhavoronkov, A. (2020). Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience, 23(6), 101199. https://doi.org/10.1016/j.isci.2020.101199

[28]Chen, W., Qian, W., Wu, G., Chen, W., Xian, B., Chen, X., Cao, Y., Green, C. D., Zhao, F., Tang, K., & Han, J. D. (2015). Three-dimensional human facial morphologies as robust aging markers. Cell research, 25(5), 574–587. https://doi.org/10.1038/cr.2015.36

[29]Bobrov, E., Georgievskaya, A., Kiselev, K., Sevastopolsky, A., Zhavoronkov, A., Gurov, S., Rudakov, K., Del Pilar Bonilla Tobar, M., Jaspers, S., & Clemann, S. (2018). PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging, 10(11), 3249–3259. https://doi.org/10.18632/aging.101629

[30]Cole, J. H., & Franke, K. (2017). Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends in neurosciences, 40(12), 681–690. https://doi.org/10.1016/j.tins.2017.10.001

[31]Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian Masouleh, S., Huntenburg, J. M., Lampe, L., Rahim, M., Abraham, A., Craddock, R. C., Riedel-Heller, S., Luck, T., Loeffler, M., Schroeter, M. L., Witte, A. V., Villringer, A., & Margulies, D. S. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage, 148, 179–188. https://doi.org/10.1016/j.neuroimage.2016.11.005

[32]Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., Ostrovskiy, A., Cantor, C., Vijg, J., & Zhavoronkov, A. (2016). Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging, 8(5), 1021–1033. https://doi.org/10.18632/aging.100968

[33]Mamoshina, P., Kochetov, K., Putin, E., Cortese, F., Aliper, A., Lee, W. S., Ahn, S. M., Uhn, L., Skjodt, N., Kovalchuk, O., Scheibye-Knudsen, M., & Zhavoronkov, A. (2018). Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. The journals of gerontology. Series A, Biological sciences and medical sciences, 73(11), 1482–1490. https://doi.org/10.1093/gerona/gly005

[34]Mamoshina, P., Kochetov, K., Cortese, F., Kovalchuk, A., Aliper, A., Putin, E., Scheibye-Knudsen, M., Cantor, C. R., Skjodt, N. M., Kovalchuk, O., & Zhavoronkov, A. (2019). Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Scientific reports, 9(1), 142. https://doi.org/10.1038/s41598-018-35704-w

[35]Zhavoronkov, A., Kochetov, K., Diamandis, P., & Mitina, M. (2020). PsychoAge and SubjAge: development of deep markers of psychological and subjective age using artificial intelligence. Aging, 12(23), 23548–23577. https://doi.org/10.18632/aging.202344

[36]Han J. J. (2024). The ticking of aging clocks. Trends in endocrinology and metabolism: TEM, 35(1), 11–22. https://doi.org/10.1016/j.tem.2023.09.007

[37]Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8

[38]Berdyshev, G. D., Korotaev, G. K., Boiarskikh, G. V., & Vaniushin, B. F. (1967). Nukleotidnyĭ sostav DNK i RNK somaticheskikh tkaneĭ gorbushi i ego izmenenie v technie neresta [Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning]. Biokhimiia (Moscow, Russia), 32(5), 988–993.

[39]Johnson, A. A., English, B. W., Shokhirev, M. N., Sinclair, D. A., & Cuellar, T. L. (2022). Human age reversal: Fact or fiction?. Aging cell, 21(8), e13664. https://doi.org/10.1111/acel.13664

[40]Higgins-Chen, A. T., Thrush, K. L., Wang, Y., Minteer, C. J., Kuo, P. L., Wang, M., Niimi, P., Sturm, G., Lin, J., Moore, A. Z., Bandinelli, S., Vinkers, C. H., Vermetten, E., Rutten, B. P. F., Geuze, E., Okhuijsen-Pfeifer, C., van der Horst, M. Z., Schreiter, S., Gutwinski, S., Luykx, J. J., … Levine, M. E. (2022). A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. Nature aging, 2(7), 644–661. https://doi.org/10.1038/s43587-022-00248-2

[41]Kabacik, S., Lowe, D., Fransen, L. et al. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nat Aging, 2, 484–493. https://doi.org/10.1038/s43587-022-00220-0

时光派
聚集全球前沿、全面、专业抗衰资讯
 最新文章