[1]Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2022, April 8). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife Sciences Publications, Ltd. https://elifesciences.org/articles/71624
[2]Horvath S. (2013). DNA methylation age of human tissues and cell types. Genome biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
[3]Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PloS one, 6(6), e14821. https://doi.org/10.1371/journal.pone.0014821
[4]Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016
[5]Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D. O., Jöckel, K. H., Erbel, R., Mühleisen, T. W., Zenke, M., Brümmendorf, T. H., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24
[6]Lin, Q., Weidner, C. I., Costa, I. G., Marioni, R. E., Ferreira, M. R., Deary, I. J., & Wagner, W. (2016). DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging, 8(2), 394–401. https://doi.org/10.18632/aging.100908
[7]Galkin, F., Mamoshina, P., Kochetov, K., Sidorenko, D., & Zhavoronkov, A. (2021). DeepMAge: A Methylation Aging Clock Developed with Deep Learning. Aging and disease, 12(5), 1252–1262. https://doi.org/10.14336/AD.2020.1202
[8]Zhang, Y., Wilson, R., Heiss, J., Breitling, L. P., Saum, K. U., Schöttker, B., Holleczek, B., Waldenberger, M., Peters, A., & Brenner, H. (2017). DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nature communications, 8, 14617. https://doi.org/10.1038/ncomms14617
[9]Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. https://doi.org/10.18632/aging.101414
[10]Liu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging cell, 19(10), e13229. https://doi.org/10.1111/acel.13229
[11]Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303–327. https://doi.org/10.18632/aging.101684
[12]Horvath, S., Oshima, J., Martin, G. M., Lu, A. T., Quach, A., Cohen, H., Felton, S., Matsuyama, M., Lowe, D., Kabacik, S., Wilson, J. G., Reiner, A. P., Maierhofer, A., Flunkert, J., Aviv, A., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., … Raj, K. (2018). Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging, 10(7), 1758–1775. https://doi.org/10.18632/aging.101508
[13]Voisin, S., Harvey, N. R., Haupt, L. M., Griffiths, L. R., Ashton, K. J., Coffey, V. G., Doering, T. M., Thompson, J. M., Benedict, C., Cedernaes, J., Lindholm, M. E., Craig, J. M., Rowlands, D. S., Sharples, A. P., Horvath, S., & Eynon, N. (2020). An epigenetic clock for human skeletal muscle. Journal of cachexia, sarcopenia and muscle, 11(4), 887–898. https://doi.org/10.1002/jcsm.12556
[14]Zhang, Q., Vallerga, C. L., Walker, R. M., Lin, T., Henders, A. K., Montgomery, G. W., He, J., Fan, D., Fowdar, J., Kennedy, M., Pitcher, T., Pearson, J., Halliday, G., Kwok, J. B., Hickie, I., Lewis, S., Anderson, T., Silburn, P. A., Mellick, G. D., Harris, S. E., … Visscher, P. M. (2019). Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome medicine, 11(1), 54. https://doi.org/10.1186/s13073-019-0667-1
[15]Peters, M. J., Joehanes, R., Pilling, L. C., Schurmann, C., Conneely, K. N., Powell, J., Reinmaa, E., Sutphin, G. L., Zhernakova, A., Schramm, K., Wilson, Y. A., Kobes, S., Tukiainen, T., NABEC/UKBEC Consortium, Ramos, Y. F., Göring, H. H., Fornage, M., Liu, Y., Gharib, S. A., Stranger, B. E., … Johnson, A. D. (2015). The transcriptional landscape of age in human peripheral blood. Nature communications, 6, 8570. https://doi.org/10.1038/ncomms9570
[16]Fleischer, J. G., Schulte, R., Tsai, H. H., Tyagi, S., Ibarra, A., Shokhirev, M. N., Huang, L., Hetzer, M. W., & Navlakha, S. (2018). Predicting age from the transcriptome of human dermal fibroblasts. Genome biology, 19(1), 221. https://doi.org/10.1186/s13059-018-1599-6
[17]Mamoshina, P., Volosnikova, M., Ozerov, I. V., Putin, E., Skibina, E., Cortese, F., & Zhavoronkov, A. (2018). Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Frontiers in genetics, 9, 242. https://doi.org/10.3389/fgene.2018.00242
[18]Huan, T., Chen, G., Liu, C., Bhattacharya, A., Rong, J., Chen, B. H., Seshadri, S., Tanriverdi, K., Freedman, J. E., Larson, M. G., Murabito, J. M., & Levy, D. (2018). Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging cell, 17(1), e12687. https://doi.org/10.1111/acel.12687
[19]Xia, X., Chen, X., Wu, G., Li, F., Wang, Y., Chen, Y., Chen, M., Wang, X., Chen, W., Xian, B., Chen, W., Cao, Y., Xu, C., Gong, W., Chen, G., Cai, D., Wei, W., Yan, Y., Liu, K., Qiao, N., … Han, J. J. (2020). Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nature metabolism, 2(9), 946–957. https://doi.org/10.1038/s42255-020-00270-x
[20]Krištić, J., Vučković, F., Menni, C., Klarić, L., Keser, T., Beceheli, I., Pučić-Baković, M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni, S., Kolčić, I., Polašek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y., … Lauc, G. (2014). Glycans are a novel biomarker of chronological and biological ages. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(7), 779–789. https://doi.org/10.1093/gerona/glt190
[21]Lehallier, B., Shokhirev, M. N., Wyss-Coray, T., & Johnson, A. A. (2020). Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Aging cell, 19(11), e13256. https://doi.org/10.1111/acel.13256
[22]Sathyan, S., Ayers, E., Gao, T., Weiss, E. F., Milman, S., Verghese, J., & Barzilai, N. (2020). Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging cell, 19(11), e13250. https://doi.org/10.1111/acel.13250
[23]Hertel, J., Friedrich, N., Wittfeld, K., Pietzner, M., Budde, K., Van der Auwera, S., Lohmann, T., Teumer, A., Völzke, H., Nauck, M., & Grabe, H. J. (2016). Measuring Biological Age via Metabonomics: The Metabolic Age Score. Journal of proteome research, 15(2), 400–410. https://doi.org/10.1021/acs.jproteome.5b00561
[24]van den Akker, E. B., Trompet, S., Barkey Wolf, J. J. H., Beekman, M., Suchiman, H. E. D., Deelen, J., Asselbergs, F. W., Boersma, E., Cats, D., Elders, P. M., Geleijnse, J. M., Ikram, M. A., Kloppenburg, M., Mei, H., Meulenbelt, I., Mooijaart, S. P., Nelissen, R. G. H. H., Netea, M. G., Penninx, B. W. J. H., Slofstra, M., … Slagboom, P. E. (2020). Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation. Genomic and precision medicine, 13(5), 541–547. https://doi.org/10.1161/CIRCGEN.119.002610
[25]Hwangbo, N., Zhang, X., Raftery, D., Gu, H., Hu, S. C., Montine, T. J., Quinn, J. F., Chung, K. A., Hiller, A. L., Wang, D., Fei, Q., Bettcher, L., Zabetian, C. P., Peskind, E., Li, G., Promislow, D. E. L., & Franks, A. (2022). A Metabolomic Aging Clock Using Human Cerebrospinal Fluid. The journals of gerontology. Series A, Biological sciences and medical sciences, 77(4), 744–754. https://doi.org/10.1093/gerona/glab212
[26]Robinson, O., Chadeau Hyam, M., Karaman, I., Climaco Pinto, R., Ala-Korpela, M., Handakas, E., Fiorito, G., Gao, H., Heard, A., Jarvelin, M. R., Lewis, M., Pazoki, R., Polidoro, S., Tzoulaki, I., Wielscher, M., Elliott, P., & Vineis, P. (2020). Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging cell, 19(6), e13149. https://doi.org/10.1111/acel.13149
[27]Galkin, F., Mamoshina, P., Aliper, A., Putin, E., Moskalev, V., Gladyshev, V. N., & Zhavoronkov, A. (2020). Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience, 23(6), 101199. https://doi.org/10.1016/j.isci.2020.101199
[28]Chen, W., Qian, W., Wu, G., Chen, W., Xian, B., Chen, X., Cao, Y., Green, C. D., Zhao, F., Tang, K., & Han, J. D. (2015). Three-dimensional human facial morphologies as robust aging markers. Cell research, 25(5), 574–587. https://doi.org/10.1038/cr.2015.36
[29]Bobrov, E., Georgievskaya, A., Kiselev, K., Sevastopolsky, A., Zhavoronkov, A., Gurov, S., Rudakov, K., Del Pilar Bonilla Tobar, M., Jaspers, S., & Clemann, S. (2018). PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging, 10(11), 3249–3259. https://doi.org/10.18632/aging.101629
[30]Cole, J. H., & Franke, K. (2017). Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends in neurosciences, 40(12), 681–690. https://doi.org/10.1016/j.tins.2017.10.001
[31]Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian Masouleh, S., Huntenburg, J. M., Lampe, L., Rahim, M., Abraham, A., Craddock, R. C., Riedel-Heller, S., Luck, T., Loeffler, M., Schroeter, M. L., Witte, A. V., Villringer, A., & Margulies, D. S. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage, 148, 179–188. https://doi.org/10.1016/j.neuroimage.2016.11.005
[32]Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., Ostrovskiy, A., Cantor, C., Vijg, J., & Zhavoronkov, A. (2016). Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging, 8(5), 1021–1033. https://doi.org/10.18632/aging.100968
[33]Mamoshina, P., Kochetov, K., Putin, E., Cortese, F., Aliper, A., Lee, W. S., Ahn, S. M., Uhn, L., Skjodt, N., Kovalchuk, O., Scheibye-Knudsen, M., & Zhavoronkov, A. (2018). Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. The journals of gerontology. Series A, Biological sciences and medical sciences, 73(11), 1482–1490. https://doi.org/10.1093/gerona/gly005
[34]Mamoshina, P., Kochetov, K., Cortese, F., Kovalchuk, A., Aliper, A., Putin, E., Scheibye-Knudsen, M., Cantor, C. R., Skjodt, N. M., Kovalchuk, O., & Zhavoronkov, A. (2019). Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Scientific reports, 9(1), 142. https://doi.org/10.1038/s41598-018-35704-w
[35]Zhavoronkov, A., Kochetov, K., Diamandis, P., & Mitina, M. (2020). PsychoAge and SubjAge: development of deep markers of psychological and subjective age using artificial intelligence. Aging, 12(23), 23548–23577. https://doi.org/10.18632/aging.202344
[36]Han J. J. (2024). The ticking of aging clocks. Trends in endocrinology and metabolism: TEM, 35(1), 11–22. https://doi.org/10.1016/j.tem.2023.09.007
[37]Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8
[38]Berdyshev, G. D., Korotaev, G. K., Boiarskikh, G. V., & Vaniushin, B. F. (1967). Nukleotidnyĭ sostav DNK i RNK somaticheskikh tkaneĭ gorbushi i ego izmenenie v technie neresta [Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning]. Biokhimiia (Moscow, Russia), 32(5), 988–993.
[39]Johnson, A. A., English, B. W., Shokhirev, M. N., Sinclair, D. A., & Cuellar, T. L. (2022). Human age reversal: Fact or fiction?. Aging cell, 21(8), e13664. https://doi.org/10.1111/acel.13664
[40]Higgins-Chen, A. T., Thrush, K. L., Wang, Y., Minteer, C. J., Kuo, P. L., Wang, M., Niimi, P., Sturm, G., Lin, J., Moore, A. Z., Bandinelli, S., Vinkers, C. H., Vermetten, E., Rutten, B. P. F., Geuze, E., Okhuijsen-Pfeifer, C., van der Horst, M. Z., Schreiter, S., Gutwinski, S., Luykx, J. J., … Levine, M. E. (2022). A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. Nature aging, 2(7), 644–661. https://doi.org/10.1038/s43587-022-00248-2
[41]Kabacik, S., Lowe, D., Fransen, L. et al. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nat Aging, 2, 484–493. https://doi.org/10.1038/s43587-022-00220-0