【Applied Energy 最新原创论文】利用物理驱动的深度学习估计动态条件下的电池健康状态

学术   2024-10-09 18:30   美国  

原文信息:

Battery state of health estimation under dynamic operations with physics-driven deep learning

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261924010158

Highlights

•提出了一种可微调的编码器-解码器深度学习框架。

特征工程技术被有效地用于压缩物理信息,并获得具有很强泛化能力的融合特征。

在动态运行中的各种充电状态间隔下,实现了高精度的 SOH 估算。

通过微调解码器权重,可对不同电池的SOH进行估算。

摘要

 准确评估电池老化对于电化学储能系统的有效性至关重要。本研究利用不同充电状态间隔的数据,重点评估锂离子电池在多动态操作下的健康状态。该方法从在线识别电池模型开始,以快速收集与老化相关的物理信息。这些物理信息与特征工程技术相结合后,被转化为能够泛化多种动态操作的融合特征。这将作为基于编码器-解码器框架的递归神经网络的输入,从而建立起融合特征与健康状况(SOH)之间的映射关系。值得注意的是,该框架具有通用性和灵活性,其编码器可与大多数递归神经网络集成,无需复杂的结构,就能提供准确的估算结果。具体来说,使用五个常见的循环神经网络,额定容量为 5.0 Ah 的电池的均方根误差小于 0.68%。此外,只需对权重进行微调,解码器就能对不同类型的电池进行 SOH 估算。这种方法强调了将物理信息与通用深度学习框架合并的有效性,从而在多动态操作下实现了精确的SOH估计。

Abstract

Accurate assessment of battery aging is crucial for the effectiveness of electrochemical energy storage systems. This study focuses estimation of the state of health for lithium-ion batteries under multi-dynamic operations, leveraging data from different states of charge interval. The approach begins with online identification of the battery model to swiftly gather aging-related physical information. This physical information, when combined with feature engineering techniques, is transformed into fused features capable of generalizing multi-dynamic operations. This is adopted as an input to a recurrent neural network based on an encoder-decoder framework, which establishes a mapping relationship between the fused features and the state of health (SOH). Notably, the framework showcases universality and flexibility, with an encoder that integrates with most recurrent neural networks, bypassing the need for intricate structures to deliver estimation with excellent accuracy. Specifically, with five common RNNs, the battery with a rated capacity of 5.0 Ah has a root mean square error of less than 0.68%. Moreover, by simply fine-tuning the weights, the decoder facilitates SOH estimation across different battery types. This methodology underscores the efficacy of merging physical information with a universal deep learning framework, enabling precise SOH estimations under multi-dynamic operations.

Keywords

State of health;

Multi-dynamic operations;

Physical information;

Transfer learning;

Recurrent neural network;

Graphics

Fig. 4. SOH estimation framework.

Fig. 6. Features extracted from partial discharge information of NMC cell.

Fig. 7. Fused feature extraction process.

Fig. 11. (a) A fine-tunable RNN-based encoder-decoder framework. (b) LSTM internal working schematic diagram.

Fig. 16.  LFP cell estimation results and errors. 

Fig. 18.  LFP cell estimation results and errors with artificially introduced noise. 

关于Applied Energy

本期小编:陈媛;审核人:武龙星

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章