原文信息
Microbial-Induced Carbon Dioxide (CO2) Mineralization: Investigating the Biomineralization Chemistry Process and the Potential of Storage in Sandstone Reservoir
原文链接:
https://www.sciencedirect.com/science/article/pii/S0306261924016519
Highlights
(1) 从油藏筛选出适用于矿化CO2的菌株并明确矿化过程化学机制
(2) 通过室内模拟岩心实验进一步揭示矿化化学过程
(3) 明确生物矿物在岩心内部形态及分布情况
Research gap
明确油藏微生物矿化封存CO2潜力。
Abstract
Mineralization represents a crucial technological approach for carbon sequestration. In this study, a strain ZL-03 with carbon mineralization ability was screened and identified as Bacillus mucilaginosus Krassilnikov by 16SrDNA. The growth morphology, physicochemical properties, and metabolic products of the strain under CO2 stress were comprehensively investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, employing the highly precise 13CO2 isotope, the chemical pathway of microbial extracellular induction for CO2 sequestration and biomineralization was elucidated. The results indicate that strain ZL-03 exhibits increased carbonic anhydrase (CA) activity and secretes extracellular organic matrix containing electron-donating functional groups such as -OH and -COOH under CO2 stress. The study reveals two pathways for strain ZL-03's extracellular mineralization of CO2:the secretion of CA promotes the dissolution and ionization of CO2 into HCO3-, which then combines with Ca2+ to form minerals; the microbial secretion of extracellular organic matrix complexes with Ca2+ in the solution to form a mineralization matrix, and CO2 reacts with the mineralization matrix (metal complex) to generate amorphous calcium carbonate (CaCO3·H2O). Moreover, the research results reveal that the selected microorganisms can reduce reservoir permeability by 63.8%.
The findings provide valuable insights into the growth behavior, physicochemical characteristics, and intricate metabolic pathways of the bacterial under CO2 stress conditions. The research significantly contributes to the understanding and advancement of microbial-mediated biomineralization processes for efficient CO2 mineralization, with implications for environmental sustainability and carbon utilization strategies.
Keywords
CO2 Sequestration
CO2 utilization
Biomineralization
Metabolic products
Chemistry process
Graphics
图1 图形摘要.
图2 A). 微生物的pH值和吸光度值。B). 通过ELISA测定碳酸酐酶活性。C). 在正常条件和补充Ca²⁺/CO₂条件下进行的傅里叶变换红外光谱测试。D). 通过拉曼测试获得的矿物沉淀。E). 矿物沉淀的扫描电子显微镜图像及其X射线衍射测试。F). 碳酸酐酶促进二氧化碳矿化的化学途径.
图3 (G). 透射电子显微镜分析处理过二氧化碳的细菌液体。(H). 有机基质促进二氧化碳矿化的化学途径.
图4 模拟矿化实验后岩心切片.
作者简介
团队介绍:
本研究由西南石油大学、重庆大学、中科院岩土力学研究所共同完成。
通信作者简介:
郑学成,男,博士(后),副教授,硕士生导师,毕业于重庆大学。四川省人社厅专家服务团专家,主要从事三次采油、应用微生物相关研究。第一作者发表SCI论文20余篇,主编 专著一部。主持包括国家自然基金等国家级、省部级项目、以及油田横向项目多项。
第一作者简介:
林小莎,重庆大学-不列颠哥伦比亚大学联合培养博士研究生,主要从事二氧化碳矿化、微生物采油及油气田场地污染处理相关研究。在Applied Energy、Fuel、Energy& Fuels及Industrial & Engineering Chemistry Research等期刊发表多篇论文,曾获西南石油大学十大杰出研究生,重庆大学科技学术先进个人等荣誉称号。
关于Applied Energy
本期小编:赵蕾蕾 审核人:赵秉旭
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!
阅读原文