【Advances in Applied Energy】有限电力供应下的多能枢纽电气化:如何更好地减排温室气体?

学术   2024-11-08 18:30   四川  

原文信息:

Electrification of multi-energy hubs under limited electricity supply: De-/centralized investment and operation for cost-effective greenhouse gas mitigation

原文链接:

https://www.sciencedirect.com/science/article/pii/S2666792422000014

Highlights

Decarbonization via electrification is effective, economic, advisable, challenging.

• Limited centralized electricity alters optimal design of new de-/centralized assets.

• Multi-objective MILP finds pareto-optimal V2G EVs and mix of converters, storages.

• Full year hourly resolution allows for detailed grid and asset operational analysis.

• Cost and emission breakdown reveal dominance of embodied emission and upfront cost.

摘要

住宅供暖和私人交通的电气化通常被视为是解决电力行业巨量温室气体(GHG)排放问题的万灵丹。然而,在相关的规划工作中,人们通常认为价格合理、安全且可持续的集中式电力的必要供应是无限的。实际上,目前尚不清楚在有限的电力供应下,电气化的效益如何。因此,本文以瑞士的五种住宅建筑类型为例,研究了联合规划的去中心化/集中化资产升级和车载二用电动汽车如何克服这些限制。在此基础上,本文提出了基于能源枢纽概念的多能源系统的新型优化方案,该方案扩展了经典的分布式能源枢纽视角,将投资纳入集中资产,同时选择、设计和运营此类资产和车辆,以最大限度地减少其排放和成本,同时还覆盖了热能供应,在A)无限供应、B)三个部分有限和C)无(独立)集中电力的情况下,电力和电动汽车的需求。这些优化证明电力的集中供应限制至关重要,因为可实现的二氧化碳排放量缓解平均从A)>60%减少到B)45%到C)30%。此外,大幅可变和广泛的资产组合是克服冬季电力短缺的供应瓶颈的最佳选择。从低成本到低排放解决方案的转变,是以天然气为基础的集中式燃气轮机和与空气源热泵相结合的分散式热电厂(CHPP)被沼气CHPP、地源热泵和集中式光伏取代,而本地光伏和电动汽车-住宅的调控方法是不变的。令人惊讶的是,所有供电部分受限的情景,包括核淘汰和额外的跨境电力交易站,都会产生类似的结果,这使得排放量在不带电的参考值基础上减少50%,而无需额外的年化成本。事实证明,更有力的减排代价高昂。总的来说,考虑到电力的有限供应可以避免高估可实现的减排量,和低估减排总成本,以及避免出现过于简单的资产组合。

更多关于"multi-energy hubs"的研究请见:

https://www.sciencedirect.com/search?qs=multienergy%20hubs&pub=Advances%20in%20Applied%20Energy&cid=777797

Abstract

Electrification of residential's heating and private mobility is often seen as a cure-all solution to the sector's immense greenhouse gas (GHG) emission problem. However, the necessary supply of affordable, secure, and sustainable centralized electricity is commonly assumed unlimited in related planning efforts. Hence, it remains unclear how beneficial electrification is under limited supply. Therefore, we investigate how jointly planned de-/centralized asset upgrades and Vehicle-2-Home enabled electric vehicles can overcome such limitations exemplarily for five residential building types in Switzerland. Thereto, the proposed, novel optimizations of Multi-energy Systems based on the Energy Hub concept, which extend the classical decentralized Energy Hub perspective to include investments into centralized assets, simultaneously select, design, and operate such assets and vehicles to minimize lifecycle-emissions and -costs while covering thermal, electrical and mobility demands under scenarios of A) unlimited, B) three partially limited, and C) no (stand-alone) centralized electricity. The optimizations prove the centralized supply limitations to be crucial, as achievable CO2eq mitigations halve on average from A) >60% over B) 45% to only C) 30%. Further, a substantially altered and wide mix of assets is optimal to overcome the identified sole supply bottleneck of electrical energy scarcity during winter. Transitioning from low-cost to low-emission solutions, natural gas based centralized gas turbines and decentralized combined heat and power plants (CHPPs) combined with air-source heat pumps are displaced by biogas CHPPs, ground source heat pumps and centralized photovoltaics, while local photovoltaics and Vehicle-2-Home usage are constants. Surprisingly, all partially limited scenarios including nuclear phase-out and additional cross-border electricity trade stops yield similar results, which enable emission mitigations of 50% over the non-electrified reference without additional annualized cost. Stronger emission mitigation proves prohibitively costly. Overall, considering limited supply avoids overestimation of achievable emission mitigation, underestimation of total costs as well as identification of too simplistic asset portfolios.

Keywords

Energy hub 

Electric mobility 

Multi-objective optimization 

Energy trilemma 

Energy dependence

Graphics

Fig. 1. System overview of residential energy supply system with centralized electricity supply systems on the left and decentralized systems on the right. Dashed outline includes all optimized assets and energy flows. The existing Trad. Grid is only optimized for operation.

Fig. 2. Power (left) and energy (right) limitations per capita (left y-axis) and for Switzerland (right y-axis) on the supply of centralized electricity in the partially limited supply scenarios: std, nN, nNnE.


Fig. 3. Stationary and mobile energy demand variation over time for the five investigated building types per capita (left y-axes) and extrapolated national values for Switzerland (right y-axes).Values in the legend indicate annual demands. Stationary Demands for Dwe 4 , avg and Dwe 4 , sum naturally overlap perfectly. Underlying hourly-resolved demand profiles are summed on a weekly basis for better readability in plots (a) and (c).

关于Applied Energy

本期小编:夏元兴;审核人:张凯。

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.109,CiteScore 20,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第53,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已正式上线。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

提交文章吧

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章