【Applied Energy最新原创论文】使用Transformer 和静止卫星数据进行太阳能临近预报

学术   2024-11-13 18:30   美国  

原文信息

Transformer approach to nowcasting solar energy using geostationary satellite data

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261924017707


Highlights

(1) 提出了基于Transformer的深度学习方法(SolarFormer)用于近实时太阳辐射临近预报

(2) SolarFormer使用静止卫星观测数据作为输入,无需地面站点数据支持

(3) SolarFormer在每小时预测中表现优于其他机器学习模型

(4) 由于其计算高效性,SolarFormer表现出对未来的更长时间预测时间的潜力

Research gap

这篇文章利用transformer和静止卫星实现对地表太阳辐射的大规模、实时、准确、稳定的预报。这个方法可以使用在所有静止卫星覆盖区域。此外,此方法具有计算和内存高效性,表现出对未来更长时间预报的潜力。

摘要

到达光伏板的全球水平辐照度(GHI)具有空间和时间变异性,这对在区域范围内稳定且具有成本效益地将太阳能电力整合到电网中构成了挑战。因此,大规模且及时、准确的GHI临近预报变得尤为重要,而大多数现有研究在这一领域表现不足。本研究介绍了SolarFormer模型,该模型首先利用卫星数据并结合门控循环单元(GRU)进行近实时GHI估算, 然后使用时空Transformer,以15分钟的间隔提供对未来3小时进行精确度稳定的预报。SolarFormer只需要由GOES-16和Himawari-8卫星共享的波段信息作为动态输入,使其能够在这些卫星覆盖的所有区域中实现近实时应用。这一特性使其在大规模能源规划中具有巨大潜力。我们通过2018年7个SURFRAD站点的地面测量GHI验证了预报结果。该模型分别在1至3小时的预报提前期内实现了每小时预测的均方根误差(相对均方根误差)为93.8 W/m²(15.0%)、118.9 W/m²(19.8%)和129.1 W/m²(24.2%)。这些结果显示,SolarFormer的均方根误差低于现有每小时更新的数值天气预报模型(如HRRR)和深度学习模型(如ConvLSTM)。此外,由于SolarFormer在计算和内存效率相比上述模型更高,他表现出有对更长时间预测的潜力,这有望为长期能源规划和电力市场投标及清算提供助力。然而,因为夜间可见卫星波段无效,SolarFormer无法在早晨预测GHI。同时,随着预报时间增加,模型累积偏差增大,这些都将是未来需要继续研究改进的方向。

Abstract

Unpredicted spatial and temporal variability of global horizontal irradiance (GHI) reaching the photovoltaic panels presents a challenge for integrating solar power into the grid stably and cost-effectively at a regional scale. Therefore, there is a recognized demand for large-scale GHI nowcasting that is both timely and accurate, an area where most existing studies fall short. This study introduces the SolarFormer model, which utilizes satellite data and incorporates a gated recurrent unit for near real-time GHI estimation. It also includes a space-time transformer to provide forecasts with a 3-h lead time at 15-min intervals, maintaining accuracy without significant degradation over extended lead times. SolarFormer requires only the selected satellite band information shared by GOES-16 and Himawari-8 as the dynamic input, enabling near-real-time application across all areas covered by these satellites. This feature makes it accessible and efficient for large-scale energy planning. We validate the forecasting result with the ground-measured GHI over seven SURFRAD stations in 2018. The model achieves an hourly prediction root-mean-square error (relative root-mean-square error) of 93.8 W/m2 (15.0 %), 118.9 W/m2 (19.8 %), and 129.1 W/m2 (24.2 %) with 1–3 h lead time respectively. These results demonstrate lower root-mean-square error compared to existing hourly updated numerical weather prediction modeling, such as High-Resolution Rapid Refresh, and deep learning models, such as ConvLSTM. Moreover, the study highlights the potential of SolarFormer for extended lead-time forecasting due to its high computation and memory efficiency compared with the above-mentioned models, potentially benefiting long-term energy planning and power market bidding and clearing. However, SolarFormer exhibits accumulated bias as the predicted lead time increases and faces challenges in predicting GHI in the early morning due to the invalid visible satellite bands during the night, suggesting areas for improvement in future studies.

Keywords

Solar energy forecasting

Photovoltaic technology

Deep learning

Transformer

Near real-time nowcasting

Geostationary satellite

Graphics

图1 SolarFormer 模型结构

图2 输入、目标值和SolarFormer预测值的一个测试样本

图3 SolarFormer模型和基准模型在每个像素点上的晴空比(CSR)验证结果

图4 SolarFormer模型和基准模型在七个SURFRAD站点上的验证结果

图5在不同绝对误差(AE)的初始条件下,预测相对均方根误差的变化。

图6在云条件改变或未改变情况下, SolarFormer对不同时长的预报能力

图7 SolarFormer在不同月份下的预报能力

图8 SolarFormer不同输入/输出时间和空间尺寸的消融实验

作者简介

第一作者简介:

李若含,博士,马里兰大学地理系博士后。从事通过结合遥感数据和深度学习对地表短波辐射进行估算和预测,在Remote Sensing of Environment, Earth System Science Data, NeurIPS等期刊和会议发表一作论文6篇

关于Applied Energy

本期小编:郑培钧;审核人:彭维柯

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

阅读原文

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章