原文信息
Quantifying the effects of dust characteristics on the performance of radiative cooling PV systems
原文链接:
https://www.sciencedirect.com/science/article/pii/S0306261924020555
Highlights
(1) 探究灰尘特性与RC-PV系统辐射特性之间的关系
(2) 建立描述积尘与RC-PV效应关系的函数模型
(3) 在不同灰尘环境下确定最优清洁周期
Research gap
这项研究全面分析了灰尘积聚对辐射制冷光伏系统(RC-PV)的影响,建立了灰尘沉积密度与系统性能指标(太阳能透射率、红外发射率和发电效率)之间的函数关系,为在多尘环境中优化 RC-PV 系统的部署和维护提供了定量见解。
Abstract
Radiative cooling technology addresses the self-heating issue in solar cells, improving power output. However, dust accumulation poses a significant challenge for radiative cooling PV systems. This study theoretically explores the radiative properties and power efficiency of radiative cooling PV systems under dust accumulation, employing the Monte Carlo Ray Tracing method to simulate light transfer through dust with varying characteristics. The influence of dust particle size, coverage area, and solar incidence angle on system performance is examined. Results show that dust accumulation decreases solar transmittance and infrared emissivity of the radiative cooling covers, thereby reducing system efficiency. The effect of highly absorptive dust on the radiative cooling cover is more pronounced than that of non-absorptive dust. For every 1 g/m2 increase in deposition density, the power generation of RC-PVs covered with non-absorptive and absorptive dust accumulation decreases by approximately 0.96% and 4.01%, respectively. Functional relationships have been established between dust density and solar transmittance, infrared emissivity, and power generation. Additionally, optimal cleaning intervals for the systems under different dust conditions are determined. For full-automatic cleaning at a dust accumulation rate of 200 mg/m2/day, the recommended intervals for nonabsorptive and absorptive dust are 44.2 and 22.1 days, respectively. These findings provide quantitative relationships between dust accumulation and its impacts on radiative cooling PV systems, highlighting the importance of regular maintenance to optimize system performance and associated costs. The results of this study offer valuable insights for the effective deployment, design, and maintenance of radiative cooling PV systems in practical applications, particularly in dusty environments.
Keywords
RC-PV systems
Radiative cooling
Dust accumulation
MCRT
Graphics
图1 RC-PV模块示意图
图2 沉积密度 ρD 对 (a) 透射率衰减因子TAF, (b) 发射率衰减因子EAF和 (c) 性能比PR的影响
图3 不同尘埃质量累积速率下的最优清洁周期
作者简介
团队介绍:
本研究由山东大学和西安交通大学的研究人员共同完成。
第一作者简介:
黄茂荃,山东大学高等技术研究院2022级博士研究生,从事新能源和可持续发展等领域的研究。在Applied Energy、Advances in Applied Energy和Renewable Energy等期刊发表一作论文9篇,授权4项国家专利,多次获得国际学术会议最佳论文奖。
通信作者简介:
孙锲,博士,现任山东大学热科学与工程研究中心主任,山东大学高等技术研究院副院长。担任山东大学国际合作联络教授,欧洲核子中心签约科学家,国际大科学工程AMS实验热控制系统负责人,瑞典皇家理工学院创新委员会委员,IEEE PES委员。担任Advances in Applied Energy 副主编,e-Prime副主编,Frontiers in Energy Research评审编辑,Energy,Applied Energy,Journal of Cleaner Production等期刊特刊编辑;国际应用能源大会、低碳城市与能源大会发起人。主要研究方向包括可持续能源系统、先进储能技术、电子设备热管理等,目前已经出版英文专著3部(篇),发表论文100余篇,其中热点论文1篇,高被引论文12篇,他引6000余次,H因子35,授权发明专利40余项,入选全球前 2% 学者(2021-2024)。
关于Applied Energy
本期小编:郑培钧;审核人:黄茂荃
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!
阅读原文