本周问题:旋转的骰子
将一个立方体放在一个平面上,并在其底面周围画一个正方形。你可以将立方体平放在桌子上,并确保它完全在正方形内,同时立方体的面朝向不同,有多少种不同的放置方式?
想象一个轴穿过立方体两个对面的中点。你可以围绕这个轴旋转立方体90度,立方体会占据相同的空间(但是方向不同)。有多少条不同的轴穿过立方体,并且你可以围绕这些轴旋转立方体,旋转角度小于360度?
对于每条轴,可以绕轴旋转哪些角度,使得旋转后的立方体占据相同的空间?计算所有轴的所有可能旋转角度的总数(包括不旋转立方体的情况,但仅计算一次)。
考虑立方体的放置方式和旋转方式数量,与立方体上的边数相比。对于其他常见的骰子形状,这个结果是否相同?这种方式适用于其他哪种形状?
大老李注:这道题其实是问,把一个骰子🎲放在桌面上,垂直的四个面对准东南西北四个方向。如果某个方向上的点数不同,算作不同的摆放方式,一共可以有多少种摆放方式?
(来源:New Scientist,BrainTwister #38)
原文:
Put a cube on a surface and trace a square around its base. How many ways can you place the cube flat on the table and perfectly within the square so that its faces are oriented differently?
Imagine an axis going through the middle of two opposite faces of the cube. You can rotate it around this axis by 90 degrees, and the cube would take up the same space (but in a different orientation). How many different axes are there going through the cube where you can do this with some rotation less than 360 degrees?
For each of these axes, by which angles is it possible to rotate through and get back to a cube taking up the same space? Count the total number of possible rotation angles over all the axes (including the case of not rotating the cube, but only once).
Consider the number of ways to place the cube, and the total number of ways to rotate the cube, relative to the number of edges on it. Is this the same for other regular shapes used for dice? What other kinds of shape does this work for?
上期问题:乘法韧性
考虑以下规则:从任意两位数开始,不断将其各位数字相乘,直到结果为一位数。例如:84 ⇨ 32 ⇨ 6,或 97 ⇨ 63 ⇨ 18 ⇨ 8。
如果从 93 开始,会发生什么?
有一个从两位数开始的长度为 5 的序列。该序列以数字 8 结束。那么起始数字必须是多少?
你能找到从三位数开始的最长序列吗?
答案:
从93开始,我们得到序列93 ⇨ 27 ⇨ 14 ⇨ 4。要找到长度为5的序列,我们需要从8往回推,8可以由18、81、24或42的数字相乘得到。要得到18,前一个数需要是29、92、36或63,因为18的非平凡因子是2、9、3和6。当一个数不是两个个位数的乘积时,序列就会停止,所以排除29(所有质数都被排除)和92。要得到36,你需要49、94或66,其中只有49可行;63可能来自79或97,但两者都是质数。由于49是7 × 7的乘积,所以序列为77 ⇨ 49 ⇨ 36 ⇨ 18 ⇨ 8。对于三位数,我们必须避免0,或者5与偶数配对,因为这些会导致序列提前结束。688、868和886可以产生长度为6的序列。679的重排列也可以产生长度为6的序列,以6结束。
大老李注:一个数字经过这种变换,变为一位数所需步数被称为乘法韧性数。目前已知的数字中,乘法韧性数最大为11,其中最小的一个数字是277777788888899。参见:https://oeis.org/A003001
原文
Starting at 93, we get 93 ⇨ 27 ⇨ 14 ⇨ 4. To find the sequence of length 5, work back from 8, which comes from multiplying the digits of 18, 81, 24 or 42. To get 18, the prior number needs to be 29, 92, 36 or 63, as the non-trivial factors of 18 are 2, 9, 3 and 6. This stops when a number isn’t the product of two single digits, so rule out 29 (all primes are ruled out) and 92. To get 36, you need 49, 94 or 66, of which only 49 works; 63 could come from 79 or 97, but both are prime. Since 49 is the product of 7 × 7, the sequence goes 77 ⇨ 49 ⇨ 36 ⇨ 18 ⇨ 8. For three digits, we must avoid 0, or a 5 paired with an even number, as these end the sequence early. 688, 868 and 886 give 6-long sequences. Rearrangements of 679 also produce sequences of length 6, ending in 6.