(请点击图片查看)
近日,江南大学食品科学与资源挖掘全国重点实验室王兴国教授团队在国际期刊《Journal of Agricultural and Food Chemistry》发表了题为“In Vitro Lipid Digestion of Milk Formula with Different Lipid Droplets: A Study on the Gastric Digestion Emulsion Structure and Lipid Release Pattern”的封面文章。Pu Zhao为第一作者,韦伟副教授为通讯作者。
最近,开发出了一种概念婴儿配方奶粉(概念 IMF),其具有被牛奶磷脂包裹的大脂质液滴(3 - 5 微米),模拟了人类乳脂肪球的大小、组成和结构。与对照配方奶粉相比,在生命早期食用概念 IMF 的小鼠在成年期显示出营养益处,包括较低的脂肪积累和更好的代谢状况。在高脂肪饮食环境下,小鼠所表现出的营养程序化效应如改善的肝脏氧化能力、线粒体融合和脂质谱持续存在。随机、对照、双盲等效试验表明,概念 IMF 可以支持健康足月婴儿的充分生长并且耐受性良好,在学龄期提高认知表现和身体质量指数(BMI)结果。与对照相比,概念 IMF 的胃肠道处理具有较慢的胃消化和较低的脂质生物可及性率,这可能促进脂质在储存期间的氧化,有益于代谢、生长和大脑发育。
具有模仿母乳脂质液滴结构的概念婴儿配方奶粉的营养益处可能归因于与传统配方奶粉不同的脂质消化动力学。先前的研究结果表明,在体外消化过程中,母乳在胃消化阶段的脂解程度(LD)较低,但在肠道消化阶段结束时比商业配方奶粉的脂解程度更高。然而,其他因素,如母乳中的脂质成分和胆汁盐刺激脂肪酶,也会影响脂质的消化行为。概念婴儿配方奶粉与传统配方奶粉之间脂质液滴的差异,包括粒径和界面组成等,先前已被证明是影响消化过程的重要因素。一般来说,较小的液滴比大液滴具有更高的消化率,在胃肠道消化过程中具有较高的初始脂解速率和较高的游离脂肪酸(FFA)释放量。与不含乳脂肪球膜(MFGM)成分的植物基配方奶粉相比,在植物基配方奶粉的脂质液滴表面掺入乳脂肪球膜成分会导致肠道消化中脂解程度的增加,这表明乳脂肪球膜成分可以在脂质液滴表面发挥作用,使脂解更类似于母乳。含有 1,3 - 二油酸 - 2 - 棕榈酸结构脂质和乳脂肪球膜成分且平均粒径为 3.67 微米的配方奶粉在肠道消化后显示出与母乳相似的高水平脂解程度和游离脂肪酸含量。然而,乳脂肪球的大小和结构对磷脂消化以及其代谢产物的后续命运的总体影响证据尚未完全揭示。大多数研究集中在水包油乳液上;然而,含有复杂的宏量和微量营养素成分以及不同脂肪球脂质组成、液滴大小和结构的配方奶粉需要进行详细探索。
本研究旨在使用动态体外模拟婴儿胃肠道脂质消化的方法,比较具有大的磷脂涂层脂质液滴的配方奶粉与具有相似脂质组成但为纳米尺寸脂质液滴的配方奶粉的消化特性。对甘油三酯(TAG)和磷脂脂解产物进行全面的脂质分析。在消化过程中,对包括粒径分布、zeta 电位和微观结构在内的结构变化进行表征。使用动力学模型拟合脂解数据。
具有不同脂质来源的概念配方奶粉 L1 和 L2 的平均粒径(D4,3≈5 微米)与母乳相似,其核甘油三酯被来自乳脂肪球膜成分的磷脂所包裹。对照配方奶粉 S1 与 L1 含有相同的脂质来源,但粒径更小(D4,3≈0.5 微米),这与传统配方奶粉相似,并且与概念配方奶粉相比,在 S1 的脂质液滴界面上观察到更多的蛋白质存在。在消化过程中,L1 和 L2 的脂解在胃消化阶段比 S1 慢,在肠道消化阶段直至 I60 时也较慢,但从肠道消化阶段的 I90 开始变快。在整个消化结束时,这些配方奶粉之间的脂解程度没有显著差异。在动力学模型中观察到类似的结果,其中在 I60 之后 S1 的时间点速率(r)小于 L1 或 L2。消化产物的种类与其脂质来源高度相关,并且脂解速率受脂质液滴结构的影响。大约 60-80% 的甘油磷脂被水解为溶血磷脂,而鞘磷脂几乎不被水解。在胃消化阶段结束时,概念配方奶粉显示脂质液滴结构大多保持完整,而对照配方奶粉有较小脂质液滴的较大聚集体。配方奶粉胃消化乳液的结构差异影响了肠道消化阶段的脂质释放。本研究证实了胃消化过程中脂质液滴结构的影响及其对肠道消化的后果。这可能为旨在模仿天然乳脂肪球以更好地提供健康益处的配方奶粉的进一步研究提供科学依据。
图形摘要
Figure 1. Comparison of the lipid droplet microstructure in control milk formula S1 and concept milk formulas L1 and L2. (a–c) CLSM images of lipid droplets double-stained with Nile Red and NBD-PC fluorescent probes in (a) S1, (b) L1, and (c) L2. All scale bars, 20 μm. (a’–c’) TEM images of lipid droplets in (a’) S1, (b’) L1, and (c’) L2. All scale bars, 1 μm.
Figure 2. Microstructure of representative lipid droplets in concept milk formula (L1 as a representative) observed by CLSM with different fluorescent probes. (a) Phenoxazine dye Nile Red used for labeling of the neutral lipids (mainly triacylglycerols). (b) Exogenous phospholipid with Rh-DOPE labeled the polar lipids in the membrane. (c) 16:0–12:0 NBD-PC specifically labels the phosphatidylcholine in the membrane. (d) 12:0-NBD-SM specifically binds to the SM in the membrane. (e) WGA used as labeling the glycosylated molecules (glycoproteins and glycolipids). Left panel, scale bars, 20 μm; right panel, scale bars, 5 μm.
Figure 3. Digestion profiles of control milk formula S1 and concept milk formulas L1 and L2. Lipolysis degree (%) of milk formulas during (a) in vitro gastric and (b) intestinal digestion. Triacylglycerol lipolysis (% of total triacylglycerols) fitting fractional conversion model of milk formulas during (c) in vitro gastric and (d) intestinal digestion. The statistical analyses for each experiment are shown in the figures. *, #, and + represented significant difference between S1 and L1, S1 and L2, and L1 and L2, respectively (P < 0.05).
Figure 4. Triacylglycerols lipolysis products of control milk formula and concept milk formulas analyzed using LC-MS. Heatmap of main released free fatty acids, monoacylglycerols, diacylglycerols, and undigested triacylglycerols in S1 (a), L1 (b), and L2 (c) during in vitro gastrointestinal digestion.
Figure 5. Polar lipid lipolysis product concentration (μmol/g fat) of control milk formula S1 (a), concept milk formulas L1 (b), and L2 (c) at G0, G120, and I120 during in vitro gastrointestinal digestion analyzed using LC-MS.
Figure 6. Structural changes of control milk formula and concept milk formulas during digestion. (a, b) Mean volume diameter (D4,3, μm) of lipid droplets in formula during (a) in vitro gastric and (b) intestinal digestion. (c, d) Zeta-potential (mV) of lipid droplets in formula during (c) in vitro gastric and (d) intestinal digestion. S1, gray triangle solid up; L1, dark-blue circle solid; and L2, light-blue box solid. The statistical analyses for each experiment are shown in the figures. *, #, and + represented significant difference between S1 and L1, S1 and L2, and L1 and L2, respectively (P < 0.05).
Figure 7. Microstructure changes of lipid droplets in milk formulas at 0, 30, 60, 90, and 120 min during in vitro gastric digestion observed by CLSM. Lipid droplets double-stained with Nile Red (red) and NBD-PC (green) fluorescent probes. All scale bars, 20 μm.
Figure 8. Microstructure changes of lipid droplets in milk formulas at 0, 30, 60, 90, and 120 min during in vitro intestinal digestion observed by CLSM. Lipid droplets double-stained with Nile Red (red) and NBD-PC (green) fluorescent probes. All scale bars, 20 μm.
Figure 9. Fluorescent images observed by the CLSM demonstrating gastric emulsion microstructure (G120) of lipid droplets in L1 (a) and S1 (b). Left panel, red, neutral lipids stained by Nile Red; middle panel, green, phosphatidylcholine stained by NBD-PC; right panel, the two (left and middle) merged CLSM images. All scale bars, 5 μm.
https://doi.org/10.1021/acs.jafc.4c05114
(请点击标题查看)
肉与肉制品 蛋与蛋制品 水产品 奶及奶制品
豆及豆制品 果蔬及果蔬制品 大米及米制品 食用菌
炎症性肠病 糖尿病 肝病 神经疾病
(请点击标题查看)
(请点击学者姓名查看)
在线投稿平台链接:https://www.wjx.top/jq/85151447.aspx
标注‘原创’仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,并不意味着代表本平台观点或证实其内容的真实性;转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请联系本平台删除。由于编译水平有限,推文或简历有不妥之处,深感抱歉,请联系本平台修改或者删除。