霍格兰
营养液
你想要的营养
我都有!
1840年,德国化学家李比希 (J.V.Liebig) 提出植物矿质营养学说,为现代无土栽培理论奠定基础[1]。1859-1865年德国科学家萨奇斯 (Sachs) 和克诺普 (Knop) 提出世界上首个营养液配方,为无土栽培技术研究揭开序幕(图1)[2]。
图1 Sachs & Knop的水培装置
科学家利用植物营养液培养技术发现,植物必需的元素约17种。大量元素有9种,分别是C、H、O、N、P、K、Ca、Mg、S,占植物干重0.1%以上。微量元素有8种,分别是Mo、Cu、Zn、Mn、Fe、B、Cl、Ni,占植物干重的0.01%以下。其中C、H、O主要从空气和水分中获得,因此只要给植物提供适宜的水、温度、光等,再将其他14种元素根据合适的配比配制成营养液,就可以使绝大部分植物的快速生长。目前,科学家们已经研究出多种植物营养液配方,其中,美国科学家D. R. Hoagland设计的营养液配方在科研和农业上的应用最为广泛。此外,应用较广的还有木村B水稻营养液、Yoshida水稻营养液等。
霍格兰营养液(Hoagland)的配制原则与依据
Hoagland等人于1919年,通过模拟植物根际土壤溶液浓度,并综合不同类型的肥沃土壤溶液,配制出两款不同的营养液。分别应用于大麦的生育前期和生育后期,均得到了良好的效果,营养液配方见表1。
Hoagland在不同时期,对不同植物提出过多种营养液配方。旱作营养液总浓度常高于水稻,营养生长以铵(NH4+-N)较好,生殖生长以硝(NO3--N)较好。麦类作物营养液吸Fe能力强,营养液宜低Fe高P。
表2中列举了常用的霍格兰营养液配方,其pH值较为稳定,且普适性极高,对大多数植物的整个生长期均能起到促进作用,营养元素均衡,不烧苗。因此,霍格兰营养液是目前市场或实验室育苗最常用,多数实验者认可的营养液配方。
Coolaber通过近20年的不断迭代升级,根据不同需求,推出3种不同产品形式的改良霍格兰溶液。
形式1:干粉+浓缩液(NSP1020)产品,分为两个部分,除钙液外,其余成分均为混合干粉形态,可根据试剂用量,称量相应组分配制工作液。
形式2:将霍格兰营养液分别配制为3个100×母液,过滤灭菌。
形式3:分为3个部分的500×母液。
高倍母液使用方便,无需称量设备,尤其在温室、试验田等野外环境,随取随用。且工作液的pH值已预调到5.8±0.2,极大程度上减少了操作者的工作量,因此500×母液(非无菌)形式的产品更适合于农业生产或大规模的实验用途。Coolaber公司推出的改良型霍格兰营养液,适用于小麦、玉米、番茄、大豆、马铃薯、辣椒、油菜、拟南芥、烟草等众多物种(图2),并得到大量客户认可与支持[3-5]。
以Coolaber改良霍格兰溶液产品形式3——500×改良型霍格兰营养液(货号:NS10205)为例,介绍其组成与使用方法。
1. 产品组成
2. 使用方法
1)如将NS10205包装的A、B、C液各1 mL依次加入497 mL蒸馏水中混匀,即得500 mL的 pH值5.8±0.1的工作液。
2)如配制10 L工作液,则取A、B、C液各20 mL依次加入9940 mL无菌水中混匀,即得10 L pH值5.8±0.1的工作液。
3)配制其它体积工作液,按比例依次加入混匀。
总结
植物所需的营养元素大致相同,所以在一定程度上营养液配方具有通用性,往往一种营养液可以满足很多植物的正常生长。不同种植物的生理反应不同,对营养要素的需求也不同,所以可以通过对植物施加缺失某种营养元素的营养液,观测其生理状态,已确定该元素对植物的作用机制,为后续补肥建议提供一定理论基础。因此,多数研究者会将霍格兰营养液作为通用的植物营养液,进行日常的植物养护。并会选择缺素霍格兰营养液进行单一营养元素的植物生理研究。
相关产品推荐
[1] 李比希(德). 李比希文选[M]. 刘更另, 李三虎 译. 北京: 北京大学出版社, 2011, 241 - 266.
[2]李程, 冯志红, 李丁仁. 蔬菜无土栽培发展现状及趋势[J]. 北方园艺, 2002(6): 9 - 11.
[3] Zhang, SJ, Flores-Cruz, et al.'Ca. Liberibacter asiaticus' Carries an Excision Plasmid Prophage and a Chromosomally Integrated Prophage That Becomes Lytic in Plant Infections[J]. Molecular plant-microbe interactions, 2011, 24(4): 458-468.
[4] Georgiev, MI, Agostini, et al. Genetically transformed roots: from plant disease to biotechnological resource[J]. Trends in biotechnology, 2012, 30(10):528-537.
[5] Shen T, Yan R, Xu F, et al. The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice[J].
Environmental and Experimental Botany, 2023, 213(10): 45 - 56.
产品引用文献
[1] Dodder-transmitted mobile systemic signals activate a salt-stress response characterized by a transcriptome change in Citrus sinensis. Frontiers in Plant Science
[2]Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT
[3]Highly efficient hairy root genetic transformation and applications in citrus. Frontiers in Plant Science
[4]Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites
[5]The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice. ENVIRONMENTAL AND EXPERIMENTAL BOTANY
[6]Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
[7]Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet (Setaria italica L.). Genes
[8]Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
[9] Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous Valine-Threonine-Isoleucine-Aspartic acid application. Frontiers in Plant Science
[10]Zinc Transporter ZmLAZ1-4 Modulates Zinc Homeostasis on Plasma and Vacuolar Membrane in Maize. Frontiers in Plant Science
[11]Nitric oxide generated by Piriformospora indica-induced nitrate reductase promotes tobacco growth by regulating root architecture and ammonium and nitrate transporter gene expression. Journal of Plant Interactions
[12]Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT
[13]Highly efficient hairy root genetic transformation and applications in citrus. Frontiers in Plant Science
[14]Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY
[15]Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites
[16]The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice. ENVIRONMENTAL AND EXPERIMENTAL BOTANY
[17]Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
[18]Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
[19]Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet (Setaria italica L.). Genes
[20]Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
[21]Mechanisms Underlying Allelopathic Disturbance of Herbicide Imazethapyr on Wheat and Its Neighboring Ryegrass (Lolium perenne). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
[22]Whole genome sequencing revealed the capability of Paenarthrobacter sp. KN0901 to simultaneously remove atrazine and corn straw at low temperatures: from gene identification to empirical validation. JOURNAL OF HAZARDOUS MATERIALS
[23]Plasma Membrane (PM) H+-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. OURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
[24]Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet (Setaria italica L.) .Genes
[25]Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
精彩回顾