霍格兰营养液

文摘   2024-10-22 10:58   北京  

霍格兰

营养液

你想要的营养

我都有!


1840年,德国化学家李比希 (J.V.Liebig) 提出植物矿质营养学说,现代无土栽培理论奠定基础[1]1859-1865年德国科学家萨奇斯 (Sachs) 和克诺普 (Knop) 提出世界上首个营养液配方,为无土栽培技术研究揭开序幕(图1[2]


1 Sachs & Knop的水培装置

科学家利用植物营养液培养技术发现,植物必需的元素约17种。大量元素有9分别是CHONPKCaMgS植物干重0.1%以上。微量元素有8分别是MoCuZnMnFeBClNi植物干重的0.01%以下。其中CHO主要从空气和水分中获得,因此只要给植物提供适宜的水、温度、光等,再将其他14种元素根据合适的配比配制成营养液就可以使绝大部分植物的快速生长。目前,科学家们已经研究出多种植物营养液配方,其中,美国科学家D. R. Hoagland设计的营养液配方在科研和农业上的应用最为广泛。此外,应用较广的还有木村B水稻营养液、Yoshida水稻营养液等


霍格兰营养液(Hoagland)的配制原则与依据

Hoagland等人于1919年,通过模拟植物根际土壤溶液浓度,并综合不同类型的肥沃土壤溶液,配制出两款不同的营养液。分别应用于大麦的生育前期和生育后期,均得到了良好的效果,营养液配方见表1


Hoagland在不同时期,对不同植物提出过多种营养液配方。旱作营养液总浓度高于水稻,营养生长以NH4+-N)较好,生殖生长以NO3--N)较好。麦类作物营养液Fe能力强,营养液宜低FeP

2中列举了常用的霍格兰营养液配方,其pH值较为稳定,且普适性极高,对大多数植物的整个生长期均能起到促进作用,营养元素均衡,不烧苗。因此,霍格兰营养液是目前市场或实验室育苗最常用,多数实验者认可的营养液配方。



Coolaber通过近20年的不断迭代升级,根据不同需求,推出3种不同产品形式的改良霍格兰溶液。

形式1:干粉+浓缩液(NSP1020)产品,分为两个部分,除钙液外,其余成分均为混合干粉形态,可根据试剂用量,称量相应组分配制工作液。

形式2:将霍格兰营养液分别配制为3100×母液,过滤灭菌。

形式3:分为3个部分的500×母液。

高倍母液使用方便,无需称量设备,尤其在温室、试验田等野外环境,随取随用。且工作液的pH值已预调到5.8±0.2,极大程度上减少了操作者的工作量,因此500×母液(非无菌)形式的产品更适合于农业生产或大规模的实验用途。Coolaber公司推出的改良型霍格兰营养液,适用于小麦、玉米、番茄、大豆、马铃薯、辣椒、油菜、拟南芥、烟草等众多物种(图2),并得到大量客户认可与支持[3-5]



Coolaber改良霍格兰溶液产品形式3——500×改良型霍格兰营养液(货号:NS10205)为例,介绍其组成与使用方法。

1. 产品组成

2. 使用方法

1)如将NS10205包装的ABC液各1 mL依次加入497 mL蒸馏水中混匀,即得500 mLpH5.8±0.1的工作液。

2)如配制10 L工作液,则取ABC液各20 mL依次加入9940 mL无菌水中混匀,即得10 L pH5.8±0.1的工作液。

3)配制其它体积工作液,按比例依次加入混匀。

总结

植物所需的营养元素大致相同,所以在一定程度上营养液配方具有通用性,往往一种营养液可以满足很多植物的正常生长。不同种植物的生理反应不同,营养要素的需求也不同,所以可以通过对植物施加缺失某种营养元素的营养液,观测其生理状态,已确定该元素对植物的作用机制,为后续补肥建议提供一定理论基础。因此,多数研究者会将霍格兰营养液作为通用的植物营养液,进行日常的植物养护。并会选择缺素霍格兰营养液进行单一营养元素的植物生理研究。


相关产品推荐


参考文献

[1] 李比希(德). 李比希文选[M]. 刘更另, 李三虎 译. 北京: 北京大学出版社, 2011, 241 - 266.

[2]李程, 冯志红, 李丁仁. 蔬菜无土栽培发展现状及趋势[J]. 北方园艺, 2002(6): 9 - 11.

[3] Zhang, SJ, Flores-Cruz, et al.'Ca. Liberibacter asiaticus' Carries an Excision Plasmid Prophage and a Chromosomally Integrated Prophage That Becomes Lytic in Plant Infections[J]. Molecular plant-microbe interactions, 2011, 24(4): 458-468.

[4] Georgiev, MI, Agostini, et al. Genetically transformed roots: from plant disease to biotechnological resource[J]. Trends in biotechnology, 2012, 30(10):528-537.

[5] Shen T, Yan R, Xu F, et al. The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice[J].
Environmental and Experimental Botany, 2023, 213(10): 45 - 56.


产品引用文献

[1] Dodder-transmitted mobile systemic signals activate a salt-stress response characterized by a transcriptome change in Citrus sinensis. Frontiers in Plant Science    

[2]Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT       

[3]Highly efficient hairy root genetic transformation and applications in citrus. Frontiers in Plant Science 

[4]Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites 

[5]The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice. ENVIRONMENTAL AND EXPERIMENTAL BOTANY

[6]Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES  

[7]Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet (Setaria italica L.). Genes  

[8]Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES    

[9] Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous Valine-Threonine-Isoleucine-Aspartic acid application. Frontiers in Plant Science

[10]Zinc Transporter ZmLAZ1-4 Modulates Zinc Homeostasis on Plasma and Vacuolar Membrane in Maize. Frontiers in Plant Science    

[11]Nitric oxide generated by Piriformospora indica-induced nitrate reductase promotes tobacco growth by regulating root architecture and ammonium and nitrate transporter gene expression. Journal of Plant Interactions  

[12]Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer. JOURNAL OF ENVIRONMENTAL MANAGEMENT    

[13]Highly efficient hairy root genetic transformation and applications in citrus. Frontiers in Plant Science  

[14]Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY   

[15]Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites   

[16]The NADPH oxidase OsRbohD and OsRbohH negatively regulate saline-alkaline tolerance in rice. ENVIRONMENTAL AND EXPERIMENTAL BOTANY  

[17]Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES    

[18]Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH   

[19]Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet (Setaria italica L.). Genes    

[20]Selenium bio-nanocomposite based on extracellular polymeric substances (EPS): Synthesis, characterization and application in alleviating cadmium toxicity in rice (Oryza sativa L.). INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES

[21]Mechanisms Underlying Allelopathic Disturbance of Herbicide Imazethapyr on Wheat and Its Neighboring Ryegrass (Lolium perenne). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY

[22]Whole genome sequencing revealed the capability of Paenarthrobacter sp. KN0901 to simultaneously remove atrazine and corn straw at low temperatures: from gene identification to empirical validation. JOURNAL OF HAZARDOUS MATERIALS  

[23]Plasma Membrane (PM) H+-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. OURNAL OF AGRICULTURAL AND FOOD CHEMISTRY    

[24]Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail   Millet (Setaria italica L.) .Genes

[25]Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH   




精彩回顾


您有一枚水稻营养液之匙 请开启水稻培养之门

Coolaber
专注生命科学,专心服务科研。致力于打造更优质、更方便、更经济的生物试剂产品。成就客户!精益求精!诚实守信!合作共赢!构建生物科技创新中心,铸造生物试剂标志企业。官方网站:www.coolaber.com联系电话:400-878-6800
 最新文章