【Applied Energy 最新原创论文】基于设计日谐波天气条件下的夜间自然通风冷却内部热质量的制冷需求降低研究

学术   2024-12-03 18:30   美国  

原文信息:

Cooling demand reduction with nighttime natural ventilation to cool internal thermal mass under harmonic design-day weather conditions

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261924023304

Highlights

(1)    Develop a design framework for nighttime natural cooling of internal thermal mass.

(2)    Optimum thickness for internal thermal mass is between 28 and 45 mm.

(3)    Internal mass with lightweight wall achieves peak cooling load reduction by 35.9 %.

(4)    The belt between Tropic of Cancer and 60°N suitable for using internal thermal mass.

(5)    Annual cooling demand reduction can reach 6.67 kWh/m2 in desert climate zones.

摘要

      由于全球变暖,不同气候区的制冷需求持续增加。利用夜间自然通风冷却内部热质量是一个可能的解决方案来减少制冷需求。然而,目前仍缺乏一个简化且准确的模型框架来评估这项技术。本研究的目标是构建一个集成了经验证的建筑内部热质量模型的框架,并应用该框架来量化在不同热质量和围护结构配置下,以及在不同气候区中空间制冷需求减少潜力。研究结果表明,使用花岗岩作为内部热质量比混凝土在降低峰值冷负荷方面效果好三倍。过多的内部热质量反而会对降低冷负荷产生不利影响。内部热质量的最佳厚度在28至45毫米之间。围护结构的构造也会影响夜间冷却的性能。在轻质建筑中应用这项技术比在重型建筑应用中减少35.9%的峰值冷负荷。这是因为重型建筑会延迟每日吸收热量的释放,导致夜间室内气温较高。在北回归线至北纬60度之间,以及南回归线至南纬45度之间,这两个区域带适合对建筑内部热质量进行夜间自然通风,每年可实现超过1.25千瓦时/平方米的制冷需求降低。在沙漠气候区,该技术表现出了卓越的降低冷却需求的潜力,每年可达6.67千瓦时/平方米。

Abstract

    Cooling demand is steadily increasing across different climate zones due to global warming. A potential solution for cooling demand reduction is applying nighttime natural ventilation to cool internal thermal mass. However, a simplified and accurate modelling framework to assess the technique is still missing. The goal of the study is to build that framework integrated with a validated internal thermal mass model and apply the framework to quantify the cooling demand reduction potential in a space with different thermal mass and envelope configurations and in different climate zones. Results show that using Granite as internal thermal mass is three times more effective than concrete to reduce peak cooling load. Adding too much internal thermal mass can create adverse effects on cooling load reduction. The optimum thickness of internal thermal mass is between 28- and 45-mm. Envelope construction also has an influence on the performance of nighttime cooling. Applying the technique in buildings with lightweight structures reduces peak cooling load by 35.9% more than heavyweight structures. As heavyweight structures delay the release of the daily absorbed heat and cause higher indoor air temperatures at night. The two belts between the Tropic of Cancer and 60 degrees north latitude, and between the Tropic of Capricorn and 45 degrees south latitude are suitable for nighttime natural ventilation of internal thermal mass, achieving the annual cooling demand reduction above 1.25 kWh m-2. In Dessert climate zones, the technique exhibits an extraordinary potential to reduce cooling demand, up to 6.67 kWh m-2 per year.


Keywords

Night cooling 夜间冷却

Passive building technique 被动建筑技术

Energy efficiency 能源效率

Building simulation 建筑模拟

Climate zones 气候分区

Graphics

Fig. 1. 实验房间及传感器布置位置示意图

Fig. 2. 数学建模框架流程图

Fig. 3. 不同地区天气数据提取方式示意图

Fig. 4. 内部热质量顶部和底部的实验温度以及模拟温度曲线对比图

Fig. 5. (a) 新墨西哥州,陶斯市7月不同材料的峰值冷负荷降低潜力 (b) 材料厚度对白天从室内空气吸收总热量的影响

Fig. 6. (a)不同围护结构下室内空气在日间被吸收和夜间被释放的总热量; (b)不同围护结构下的峰值冷负荷降低量

Figure 7 不同气候区应用夜间自然通风冷却内部热质量的制冷需求量

Figure 8 (a)设计日和以小时变化的天气条件下月度制冷需求降低量对比;(b)新墨西哥州陶斯市不同月份空气被吸收和释放的总热量

Figure 9 在适宜区域与一般区域应用夜间自然通风的室内热质量的最热月干球温度范围和年平均风速对比

Figure 10 陶斯地区不同内部热质量材料的经济性分析

团队简介

      本研究由新西兰University of Canterbury,天津大学,美国Michigan State University,加拿大Concordia University,广州仲恺农业工程学院和重庆大学的研究人员共同完成。


通信作者简介:

       武文涛,博士,新西兰University of Canterbury高级讲师,研究重点是储能、可再生能源、建筑模拟、暖通空调、CFD 和低碳建筑技术,文章项目受新西兰皇家学会资助。在丹麦奥胡斯大学获得工程学博士学位,分别曾在哈佛大学,苏黎世联邦理工学院担任博士后研究员。在加入 UC 之前,他是田纳西州立大学土木与建筑工程系的助理教授。他在田纳西州立大学的第一年就获得了 5 项资助(美国国家科学基金会、DHUD、DOE)。在Applied energy,Applied Thermal Engineering,Renewable and Sustainable Energy Reviews,Journal of Cleaner Production,Building and Environment等期刊上发表论文超过40篇,并多次受邀报告。

第一作者简介:

        李明曈,新西兰University of Canterbury 土木与自然资源工程学院博士研究生,主要从事建筑能源模拟,建筑室内热质量和短期储能研究。

关于Applied Energy

本期小编:赵秉旭;审核人:赵蕾蕾

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章