原文信息
Bi-level multi-objective optimization framework for wake escape in floating offshore wind farm
原文链接:
https://www.sciencedirect.com/science/article/pii/S0306261924020956
Highlights
(1) 关注漂浮式海上风电场的运行与布局等不同时空尺度问题
(2) 提出一种基于风机可移动性的广义尾流控制方法--“尾流逃逸”
(3) 定义漂浮式海上风电场的双水平多目标优化问题与相应优化框架
(4) 搭建FOWFBi-Mopt平台,通过协调双水平的优化以实现尾流逃逸
(5) 探究并降低漂浮式海上风电场中风机可移动性对尾流效应的不利影响
Research gap
现有研究在评估漂浮式风机运动带来的优化潜力时,往往忽略了其不利影响,且对于风电场布局设计与运行控制往往采用分离优化的方式,未能充分考虑两个尺度之间的相互影响。本文针对漂浮式海上风电场中尾流效应与风机运动之间的高度耦合问题,通过综合布局设计与运行控制对风机运动的影响构建了双水平多目标优化框架,为漂浮式海上风电场尾流效应的多目标协调优化提供了新思路。
Abstract
Due to the significant motion of wind turbines (WTs) during operation, the coupling of wake effect in floating offshore wind farm (FOWF) is intensified, making the optimization problem combining layout and operation challenging. To address this issue, a bi-level multi-objective intelligent optimization framework for FOWF is proposed. Based on the interaction among operation control, force-induced motion and wake effect, an efficient repositioning model that considers the aerodynamic effect on moveable WT is established. On this basis, a generalized wake control method called "Wake Escape" is defined, taking into account the relationship between optimization variables and objectives in layout design and operation control. To solve the bi-level multi-objective optimization problem of FOWF, FOWFBi-Mopt platform is constructed, on which multi-objective particle swarm optimization and equilibrium optimizer are developed. Additionally, the key parameters and dimensional characteristics are integrated between the layout and operation, facilitating the coordination process of optimization objectives by associating the inner and outer-level algorithms. The simulation results demonstrate that the proposed bi-level optimization framework effectively mitigates the adverse effect of moveable WTs from both layout and operation. Diverse solutions are obtained from Pareto front, achieving comprehensive optimization of FOWF, with the maximum reduction of 1.183 % in the levelized production cost.
Keywords
Floating offshore wind farm
Bi-level optimization
Wake escape
Moveable wind turbine
Graphics
Fig. 2 Systematic association of FOWF
Fig. 3 Maximum movable range of the floating platform
Fig. 5 Wake Escape combining layout optimization and operation optimization
Fig. 6 Bi-level multi-objective optimization platform for FOWF
Fig. 7 Optimization flow chart
Fig. 9 The result of multi-objective optimization in comprehensive case A
Fig. 13 Comparison of three fitness in comprehensive case B
作者简介
团队介绍:
本研究由中南大学、韩国Kunsan National University、以及克罗地亚University of Zagreb的研究人员共同完成。
通信作者简介:
宋冬然博士,中南大学副教授,博士生导师,教育部学位中心论文评审专家,国家/广东/浙江省自然科学基金项目评审专家,MPCE(Q1)/PCMP(Q1)/JMSE(Q1)等7种SCI期刊和2种EI期刊(电力系统保护与控制、能源工程)编委/副编辑。主要研究方向有:1)风力发电系统的控制与优化技术,如单机/风电场/集群发电和载荷性能的综合优化、尾流建模与调节、漂浮式风电系统的集成设计等;2)人工智能在风能/太阳能/储能等新能源系统中的应用;3)综合能源系统和中低压配电网的优化。主持国家自然科学基金项目2项,授权国家发明专利18项,作为第一/通讯作者发表了60多篇高水平论文,7篇ESI论文在全球工程学科排名前1%。
第一作者简介:
黄朝能,中南大学自动化学院博士研究生,目前从事分布式尾流协同控制、海上风电场多时空尺度优化、漂浮式风机多体动力学建模等方面的研究。担任Frontiers in Energy Research评审编辑、PCMP(Q1)审稿人,作为骨干成员参与国家自然科学基金项目、企业产学研课题等项目多项,致力于开展在漂浮式海上风电场系统建模与集成优化方面的研究。
关于Applied Energy
本期小编:云冬郭;审核人:范光瑶
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!
阅读原文