【Applied Energy】面向绿氢生产的碱性与质子交换膜电解水制氢比较实验研究

学术   2024-12-06 18:31   美国  

原文信息

Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production

原文链接:

https://www.sciencedirect.com/science/article/abs/pii/S0306261924023195


Highlights

(1) 完成了碱性与质子交换膜电解制氢的全面对比实验研究

(2) 减载过程动态响应时间长于加载过程

(3) 冷启动时间应以达到额定电流和操作条件来表征

(4) 电解制氢动态过程中负荷运行范围下限较稳态过程低

(5) 碱性和质子交换膜电解制氢均展现了灵活的爬坡速率

Research gap

碱性电解制氢、质子交换膜电解制氢及其混合系统是支撑可再生能源绿氢发展的关键技术。然而,相关实验研究非常有限,特别是二者比较研究;且已有研究关于二者动态特性结论存在差异。因此本研究通过对碱性和质子交换膜电解系统的全面比较实验研究,以期回答研究问题:“碱性电解和质子交换膜电解系统在不同操作过程中电-热-质耦合动态特性有何不同,这些差异对可再生能源集成有何影响?”

摘要

碱性(ALK)和质子交换膜电解制氢(PEM)是支持绿氢发展的两项关键技术,了解其不同特性对于系统优化至关重要,并有利于混合电解策略发展。然而,面向绿氢生产的实验研究较为有限,尤其是两种系统的比较研究。本研究对碱性和质子交换膜电解制氢系统进行了全面的比较实验分析,实验系统氢气生产速率均为1400 ml/min,涉及稳态、冷启动、受控动态过程以及与太阳能集成的电-热-质耦合动态实验。结果表明,PEM产氢能耗较低,为4.1至4.3 kWh/Nm³,而ALK为4.6至4.8 kWh/Nm³。本研究建议通过两个特定时间点来表征冷启动时间:达到额定电气参数和操作条件,第二个时间点通常较长,是冷启动过程中的主要限制因素。加、减载过程中的动态响应呈现显著的不对称性,减载过程持续时间较长。热量和气体纯度对电气变化的响应也表现出不同的模式,氧中氢(HTO)稳定时间较温度和氢中氧(OTH)长。这表明,在动态条件下负载运行下限可以低于稳态条件,实验中ALK和PEM分别从50 %调整至30 %和从40 %调整至10 %,这在太阳能集成实验中得到验证。两种系统都表现出灵活的爬坡速率,ALK为70 %/秒,PEM为90 %/秒。因此,二者均显示出与太阳能集成的可行性,其中PEM更为适合,而ALK则需要进一步研究以有效管理HTO水平的上升。本研究为推动绿氢生产提供了实验数据基础和有益见解。

Abstract

Alkaline electrolysis (ALK) and polymer electrolyte membrane electrolysis (PEM) are two pivotal technologies supporting the advancement of green hydrogen production. Understanding their distinct characteristics is essential for optimizing production systems, with potential implications for future hybrid electrolysis strategies. However, experimental studies on green hydrogen electrolysis are limited, particularly comparative investigations between these two systems. This study conducts a comprehensive comparative experimental analysis of ALK and PEM systems with an identical hydrogen production rate of 1400 ml/min. It focuses on electro-heat-mass coupled dynamics across steady-state, cold-start, controlled dynamic processes, and solar power integration. Results reveal that PEM consumes less energy for hydrogen production, ranging from 4.1 to 4.3 kWh/Nm³, compared to 4.6–4.8 kWh/Nm³ for ALK. This study proposes that cold start time be characterized by two specific time points: reaching rated electrical parameters and achieving operational conditions. The second time point is typically longer and represents the primary limiting factor in the cold start process. Dynamic responses during ramp-up and ramp-down processes are notably asymmetric, with longer durations observed during ramp-down. Heat and gas purity responses to electrical changes also follow distinct patterns, with hydrogen to oxygen (HTO) stabilizing slower than temperature and oxygen to hydrogen (OTH). This facilitates the potential that the lower load limit can be reduced under dynamic conditions compared to steady states, as demonstrated by ALK and PEM adjusting from 50 % to 30 % and from 40 % to 10 % respectively in solar integration. Both systems exhibit agile ramp rate, with ALK adjusting its current by 70 %/s and PEM by 90 %/s. Both systems show viability for solar power integration, with PEM being more immediately suitable, while ALK requires further investigation to effectively manage rising HTO levels. This study provides an experimental data foundation and insights for advancing green hydrogen production.

Keywords

Alkaline electrolysis (ALK)

Proton exchange membrane electrolysis (PEM)

Experimental study

Steady and dynamic response characteristics

Solar power integration

Electro-heat-mass coupled phenomena

Graphics

图1 ALK和PEM电解相关电-热-质多参数耦合

图2 实验台示意图

图3 冷启动过程对比

图4 加/减载过程动态响应分析

图5 耦合光伏功率输入动态响应特性(左:碱性;右:质子交换膜)

作者简介

通信作者简介:

王静贻,博士,哈尔滨工业大学(深圳)副研究员,博士生导师,高级工程师,从事低碳能源系统优化与调控研究。在Applied Energy、Energy Conversion & Management、Energy、Nature Communications等期刊上发表论30余篇。

关于Applied Energy

本期小编:范光瑶;审核人:云冬郭

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!

阅读原文

AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
 最新文章