原文信息
Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production
原文链接:
https://www.sciencedirect.com/science/article/abs/pii/S0306261924023195
Highlights
(1) 完成了碱性与质子交换膜电解制氢的全面对比实验研究
(2) 减载过程动态响应时间长于加载过程
(3) 冷启动时间应以达到额定电流和操作条件来表征
(4) 电解制氢动态过程中负荷运行范围下限较稳态过程低
(5) 碱性和质子交换膜电解制氢均展现了灵活的爬坡速率
Research gap
碱性电解制氢、质子交换膜电解制氢及其混合系统是支撑可再生能源绿氢发展的关键技术。然而,相关实验研究非常有限,特别是二者比较研究;且已有研究关于二者动态特性结论存在差异。因此本研究通过对碱性和质子交换膜电解系统的全面比较实验研究,以期回答研究问题:“碱性电解和质子交换膜电解系统在不同操作过程中电-热-质耦合动态特性有何不同,这些差异对可再生能源集成有何影响?”
Abstract
Alkaline electrolysis (ALK) and polymer electrolyte membrane electrolysis (PEM) are two pivotal technologies supporting the advancement of green hydrogen production. Understanding their distinct characteristics is essential for optimizing production systems, with potential implications for future hybrid electrolysis strategies. However, experimental studies on green hydrogen electrolysis are limited, particularly comparative investigations between these two systems. This study conducts a comprehensive comparative experimental analysis of ALK and PEM systems with an identical hydrogen production rate of 1400 ml/min. It focuses on electro-heat-mass coupled dynamics across steady-state, cold-start, controlled dynamic processes, and solar power integration. Results reveal that PEM consumes less energy for hydrogen production, ranging from 4.1 to 4.3 kWh/Nm³, compared to 4.6–4.8 kWh/Nm³ for ALK. This study proposes that cold start time be characterized by two specific time points: reaching rated electrical parameters and achieving operational conditions. The second time point is typically longer and represents the primary limiting factor in the cold start process. Dynamic responses during ramp-up and ramp-down processes are notably asymmetric, with longer durations observed during ramp-down. Heat and gas purity responses to electrical changes also follow distinct patterns, with hydrogen to oxygen (HTO) stabilizing slower than temperature and oxygen to hydrogen (OTH). This facilitates the potential that the lower load limit can be reduced under dynamic conditions compared to steady states, as demonstrated by ALK and PEM adjusting from 50 % to 30 % and from 40 % to 10 % respectively in solar integration. Both systems exhibit agile ramp rate, with ALK adjusting its current by 70 %/s and PEM by 90 %/s. Both systems show viability for solar power integration, with PEM being more immediately suitable, while ALK requires further investigation to effectively manage rising HTO levels. This study provides an experimental data foundation and insights for advancing green hydrogen production.
Keywords
Alkaline electrolysis (ALK)
Proton exchange membrane electrolysis (PEM)
Experimental study
Steady and dynamic response characteristics
Solar power integration
Electro-heat-mass coupled phenomena
Graphics
图1 ALK和PEM电解相关电-热-质多参数耦合
图2 实验台示意图
图3 冷启动过程对比
图4 加/减载过程动态响应分析
图5 耦合光伏功率输入动态响应特性(左:碱性;右:质子交换膜)
作者简介
通信作者简介:
王静贻,博士,哈尔滨工业大学(深圳)副研究员,博士生导师,高级工程师,从事低碳能源系统优化与调控研究。在Applied Energy、Energy Conversion & Management、Energy、Nature Communications等期刊上发表论30余篇。
关于Applied Energy
本期小编:范光瑶;审核人:云冬郭
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!
阅读原文