原文信息:
Color Design for Daytime Radiative Cooling: Fundamentals and Approaches
原文链接:
https://www.sciencedirect.com/science/article/pii/S0306261924018191
Highlights
• 系统地讨论了被动式日间辐射制冷的基本原理和色彩设计的方法
• 对彩色被动辐射制冷(CPRC)的代表性着色策略进行了全面综述和比较
• 提出了CPRC材料设计未来有价值的发展方向
Research gap
本文总结了被动日间辐射制冷(PDRC)的基本原理,详述了不同着色机制的原理以及基于各种着色机制设计彩色辐射制冷(CPRC)材料的适用和通用的优化策略。
Abstract
The escalating global energy crisis and the worsening global warming have intensified the heat threats posed by high temperatures. Traditional cooling methods like air conditioning are not only energy-intensive but also contribute to environmental degradation. In response, there is a pressing demand for novel, eco-friendly cooling technologies, particularly amid the growing global push for carbon neutrality. As a passive cooling method that does not require any extra power input, radiative cooling offers a promising solution, utilizing thermal radiation to cool the Earth by transferring heat directly to outer space. However, current radiative cooling materials generally have a monotonous white appearance due to their high reflectivity to solar radiation, which, considering their prospects for outdoor applications, has prompted the need for color design. Recent advancements have led to the development of colored passive radiative cooling (CPRC) materials, offering passive cooling without additional energy input, colorful aesthetic appearance, and facile preparation methods. In this review, the latest progress in CPRC materials are summarized, covering fundamental principles, various color design solutions, and potential applications. Besides, the coloration strategy including chemical, structural, and luminescent approaches for CPRC are comprehensively analyzed, providing insights into the future development and deployment of CPRC materials for outdoor energy efficient systems and thermal regulation.
Keywords
Colored passive radiative cooling
Coloration strategy
Chemical color
Structural color
Luminescent color
Energy efficient
Graphics
图1 图形摘要
图2 辐射制冷工作原理示意图。(a)地球表面和外太空之间的热流示意图;(b)AM1.5太阳光谱、300 K黑体辐射光谱和8-13μm大气透明窗口;(c)选择性和非选择性辐射制冷器的工作过程示意图;理想选择性和非选择性热发射器的中红外光谱(d)和净冷却功率(e);(f)彩色辐射器的能量流动
图3 色彩空间原理。(a)颜色感知过程的示意图;(b)颜色匹配函数x(λ)、y(λ)和z(λ);(c) CIE 1931 XYZ颜色空间;(d)参考文献[61]中红色、绿色、蓝色冷却器的色域与CIE 1931颜色空间中绘制的色域sRGB的对比
团队介绍
通信作者简介:
吕建国,浙江大学材料学院硅及先进半导体材料全国重点实验室副研究员,博士生导师。浙江省杰出青年基金获得者,浙江省钱江人才、151人才。主要从事半导体电子材料的研究,包括半导体薄膜与光电子器件、纳米材料与电化学储能、功能仿生与涂层材料等,部分科研成果已实现产业化。在Chemical Society Review、Advanced Materials等国际期刊发表SCI论文200余篇,其中ESI热点论文1篇,高被引论文12篇;SCI引用11000余次,H因子55;入选中国高被引学者、全球学者库国内学者学术影响力排行榜、斯坦福大学全球前2%顶尖科学家。
第一作者简介:
余涛,浙江大学材料科学与工程学院硅及半导体先进材料国家重点实验室硕士研究生,从事日间辐射制冷材料与应用的研究。
关于Applied Energy
本期小编:蔡吉祥;审核人:朱莲峰
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子10.1,CiteScore 21.2,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》影响因子13.0,CiteScore 23.9。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!